

Mathematics and Computer Science
2022; 7(5): 81-101
http://www.sciencepublishinggroup.com/j/mcs
doi: 10.11648/j.mcs.20220705.11
ISSN: 2575-6036 (Print); ISSN: 2575-6028 (Online)

Application Provider Interface for Interaction Between Java
and Prolog Programming Languages

Jose Eduardo Zalacain Llanes

DESOFT, Ciego De Ávila, Cuba

Email address:

To cite this article:
Jose Eduardo Zalacain Llanes. Application Provider Interface for Interaction Between Java and Prolog Programming Languages.
Mathematics and Computer Science. Vol. 7, No. 5, 2022, pp. 81-101. doi: 10.11648/j.mcs.20220705.11

Received: June 23, 2022; Accepted: August 2, 2022; Published: September 28, 2022

Abstract: There are many initiatives in presents-days for interaction between Java and Prolog programming languages.
These initiatives allow combine two programming paradigms, Object Oriented Programming and Logic Programming. Every
proposed interface has specifics features depending of the final use. The present paper introduces a new Java Prolog Interface
(JPI) to be used for Prolog persistence interacting from Java side and functional programming from Prolog side. JPI define a
layered architecture where each component represents a library to connect the final user application with some specific Prolog
Engine. The project equals to existing solutions have an implementation for the most popular open source Prolog Engines like
SWI, YAP, TuProlog, JLog and JTrolog. To support Java and Prolog interaction an inter-languages data type mappings between
Java objects and Prolog terms is implemented. This API have a logic development workflow to create Terms, Engines, Query
and some builder classes to help Clauses and Query creation. JPI implement the javax.script interface include in Java from
version 1.6. Using a Java Prolog Benchmark test and evaluate different Prolog Engines implementations to determine the
performance over JPI. The best performance is obtained using pure Java Prolog Engines respect to Native Engines. JPI is a
modern solution that take the best features from existing solutions and combine all in one. It’s more flexible, adaptive and have
an Application Provider Interface (API) easy to use. Provides clear and concise access to Prolog and simplifies the integration
of predicates in Prolog and provides an automated object-to-term mapping mechanism.

Keywords: Java, Prolog, Connector, Terms, Prolog Engine, Java Virtual Machine

1. Introduction

There are many initiatives in presents-days for interaction
between Java and Prolog programming languages. These
initiatives allow combine two programming paradigms,
Object Oriented Programming (OOP) and Logic
Programming (LP). The currents solutions can be categorized
in three types (Java-Based Prolog Engine implementations,
specific Engine implementation and Multi-engine
implementations). Java Prolog Interface (JPI) is categorized
like Multi-engine implementation. Is influenced by
Interprolog [1], Prolog Development Tool Connector (PDT)
[2] and Java Prolog Connectivity (JPC) [3, 4]. Previous
solutions only communicate native prolog engine
implementations like SWI [5], YAP [6] and XSB [7]. JPI is
an intent to connect all prolog implementations, Natives and
Java-Based.

All Java Prolog connector contains in your design concepts

like Engine Abstraction, Data Types and Interlanguage Type
Converter (Mapping). The Engine Abstraction is the feature
that allow interact with concrete engines in transparent way.
It allows the coupling and decoupling different concrete
Prolog engines implementations and the application code still
remain the same. Only change the concrete Prolog Driver or
Provider. The data types in Java-Prolog connector are an
abstraction too, but for concrete data types. The main target
for data types abstraction is similar to engine abstraction,
code one. A special data type implementation is Reference
data type (REF). This feature is essential for communicate
Prolog to Java and hold Java references to prolog side.
Interlanguage type converter is the feature that identify
similar type and convert from one language to the other
equivalent. It possibility formulate queries in one target
language passing the queries to the other one and obtain the
result in original language built-ins types. This feature is a
modern approach described in JPC and CAPJA [8].

82 Jose Eduardo Zalacain Llanes: Application Provider Interface for Interaction Between Java and
Prolog Programming Languages

JPI introduce new features doing a special difference over
your influences. The Java Scripting Engine implementation.
The Java Scripting Engine [9-11] was introduced in Java
Runtime Environment (JRE) in 1.6 version and release under
javax.script package. The first intent to implement this
interface was TuProlog [12] in 3.0.0 version. The Java
Scripting Engine implementation is a possible use over one
Java Specification API, but Java Prolog connector need more
over Java Platform. Java Prolog Interface need be a specific
API specification like (javax.logic) for all logic and
functional language interaction. One specification like this
allow more direct implementations reducing the impedance
mismatch cost and self-platform distribution API. There are
many project that use Java Prolog connectors and always a
new interface is produced, JPL [13], Interprolog, PDT
Connector, JPC, CAPJA. A Java Prolog Specification will
remove the repetitive interface creation.

2. Architecture

JPI use a layered architecture pattern where every layer
represents a component. The multi-engine Java Prolog
connectors provide different levels of abstraction to simplify the
implementations of common inter-operability task JPC. Java
Prolog Connectors architectures describe three fundamentals
layers, High-level API layer, Engine Adapter layer and Concrete
Engine layer. High-level API layer define all services to be used
by the users in the Java Prolog Application that is the final
architecture layer on the architecture stack. High-level API
provide the common implementation of Engine Abstraction,
Data Type and Inter-Language conversion. The adapter layer
adapts before mentioned features to communicate with the
concrete Engine Layer, being the last responsible of execute the
request services.

All existing Java Prolog Connectors implementation only
bring support for Native Prolog Engines that have JVM
bindings driver. JPI project is more inclusive and find
connect all Prolog Engines Categories, Native and Java
Based implementations. Some particular Java Based
implementations in the future can be implement in strike
forward mode the JPI interface. This particulars
implementations reduce the impedance mismatch by remove
the adapter layer. Therefore, JPI reference implementations
will be faster than other that use adapter layer.

Table 1. Component stack that represent the JPI architecture.

 User Application
 Java Prolog Interface (JPI)
JPI-JPL JPI-JTrolog JPI-JLog JPI-TuProlog JPI- JPL7
JPL JTrolog JLog TuProlog JPL7
SWI Java Virtual Machine (JVM) SWI7
 Operating System

In JPI architecture stack in the bottom layer we have the
Operating System. The Operating System can be Windows,
Linux or Mac OS. Over Operating System, we have the native
implementation of JVM and Prolog Engines like SWI, SWI7
and others. Over JVM and Prolog Engines we have Java Based

Prolog Engines implementations and JVM bindings driver that
share the runtime environment with JVM and native Prolog
Engines. Over Java Based Prolog Engines implementations
and JVM bindings drivers we have the JPI correspondent
adapters. The adapters artifacts are the JPI implementations for
each Prolog Engines. Over each adapter we have the JPI
application provider interface and at the top stack we the final
user application. The user application only interacts with the
JPI providing single sourcing and transparency.

3. Data Type Conversion

Many authors study the Java-Prolog inter language
conversion [3, 4, 8, 14-16]. This work proof that is possible
find a function � over prolog data type set � such that
�(�) = � and inverse function ��	 over Java primitive data
type set O such that ��		(�) = � where �	 ∈ 	� and �	 ∈ 	� .
The object term mapping can be resume in a single table.

Table 2. Correspondence between LP data type and OO primitive data type.

Logic Programing Object Oriented

Nil Null
True True
Fail False
Atom String
Float Float
Integer Integer
Structure Object
List Array

JPC remark that it is not always possible find an inverse
function to convert from Java primitive types to Prolog data
type. This is because there are more primitive types in Java
than Prolog. Byte, Short, Integer and Long produce a Prolog
Integer data type but Prolog Integer only can produce Integer
Java primitive type. The same case occurs with Character and
String that only produce Prolog Atom, but Prolog Atom only
produce Java String. To mitigate this problem is use the
typed conversion technique that allow specify the result type.
A special conversion case is multivalued conversion.
Multivalued conversion allow convert List (Array) to Prolog
List. JPI convert Prolog List to Java array of objects and the
inverse case is supported too. Other solutions allow direct
conversion to java.util.List but we consider that Java List it is
not a primitive type. Another special case is Prolog Structure
type that for this implementation level is itself represented
like Java Object. There are other strategies at most advanced
implementation level that map a Prolog Structure to some
object instance of some related Class in correspondence to
the most general predicate for the structure. Such is the case
of CAPJA [8]. Prolobjectlink Project have an equivalent
implementation where this conversion is supported but it is
not covered in this paper.

4. Application Provider Interface

The JPI design use the common implementation technique
for application provider’s interfaces. JPI define an interface

 Mathematics and Computer Science 2022; 7(5): 81-101 83

for every Prolog component and data type. Are derived from
this interfaces abstract classes to join all common methods
for concretes implementation classes. The concretes

implementation classes define the particular way to
implement some behavior. The tables 3 and 4 show the
correspondent interfaces and classes in JPI design.

Table 3. JPI interface summary.

Interface Description

PrologAtom Represent the Prolog atom data type.
PrologClause Prolog clause is composed by two prolog terms that define a prolog clause, the head and the body.
PrologClauseBuilder Prolog clause builder to create prolog clauses.
PrologClauses Clause family list that join all clauses with same functor/arity based indicator.
PrologConsole Represent the prolog console of the system.
PrologConverter<T> Converter for convert PrologTerm to the equivalent native T term representation.
PrologDouble Prolog term that represent a double precision floating point number.
PrologEngine A PrologEngine instance is used in order to interact with the concrete prolog engine.
PrologFloat Prolog term that represent a single precision floating point number.

PrologFormatter

Class that define the string format for prolog logger output. have a format method that give some log record and return the string
format for this record to be print in logger output.

PrologIndicator Indicator to denote the signature for Prolog Terms using a functor/arity format.
PrologInteger Prolog term that represent a integer number.
PrologJavaConverter Converter for convert PrologTerm to the equivalent Java object taking like reference the following equivalence table.
PrologList Represent prolog list compound term.
PrologLogger Logger platform interface to log message at any level.
PrologLong Prolog term that represent a long integer number.
PrologNumber Represent all Prolog number data type.
PrologOperator This class defines a Prolog operator.
PrologOperatorSet A collection that contains no duplicate Prolog operators.
PrologProvider Prolog Provider is the class to interact with all prolog components (data types, constants, logger, parser, converter and engine).
PrologQuery Prolog query is the mechanism to query the prolog database loaded in prolog engine.
PrologQueryBuilder Prolog query builder to create prolog queries.
PrologReference Compound term that have like argument the object identification atom.
PrologStructure Represent structured prolog compound term.
PrologTerm Ancestor prolog data type.
PrologVariable Prolog term that represent variable data type.

Table 4. JPI class summary.

Class Description

AbstractClause Partial implementation of PrologClause interface.
AbstractConsole Partial implementation of PrologConsole interface.
AbstractConverter<T> Partial implementation of PrologConverter interface.
AbstractEngine Partial implementation of PrologEngine.
AbstractIndicator Partial implementation of PrologIndicator interface.
AbstractIterator<E> Partial implementation of Iterator interface.
AbstractJavaConverter Partial implementation of PrologJavaConverter interface.
AbstractLogger Partial implementation of PrologLogger interface.
AbstractOperator Partial implementation of PrologOperator.
AbstractProvider Partial implementation of PrologProvider
AbstractQuery Partial implementation of PrologQuery interface.
AbstractReference Partial implementation of PrologReference interface.
AbstractTerm Partial implementation of PrologTerm interface.
ArrayIterator<E> Iterator implementation over array of elements.
Licenses Class that contains some constants licenses names.
Prolog Bootstrap platform class.
PrologScriptEngineFactory Partial implementation of ScriptEngineFactory
PrologTermType Contains all PrologTerm types constants

JPI describe a group situation that produce errors. For this situations the prolog interface has several error classes can be
raised when some error occurs. The table 5 show the correspondent error classes in JPI design.

Table 5. JPI error summary.

Error Description

ArityError Runtime error raised when occurs one call to get arity method over a term that no have arity property.

CompoundExpectedError

Runtime error raised when occurs one call to some method over no compound term like get arguments or get argument
at some position. all atomics term no have arguments and optionally over related invocations of the mentioned methods
this runtime error take place.

84 Jose Eduardo Zalacain Llanes: Application Provider Interface for Interaction Between Java and
Prolog Programming Languages

Error Description

FunctorError Runtime error raised when occurs one call to get functor method over a term that no have functor property.
IndicatorError Runtime error raised when occurs one call to get indicator method over a term that no have indicator property.
ListExpectedError Runtime error raised when the expected term is a Prolog list.
PrologError Common runtime error that can be used for any Prolog error notification.
StructureExpectedError Runtime error raised when the expected term is a Prolog structure.
SyntaxError Runtime error raised when occurs one syntax error.
UnknownTermError Runtime error raised when PrologConverter don't have an equivalent term for some passed object.

4.1. Prolog Converter

PrologConverter is a converter for convert PrologTerm to
the equivalent native term representation. Contains several
methods can be used in different conversion situation. The
interface methods describe two method categories. The
methods that convert from PrologTerm returning the
equivalent native term representation and The methods that
convert to PrologTerm using the equivalent native term

representation. Some PrologConverter class conversion
methods can receive as a second parameter the expected type
of the converted object. This method category describes the
Typed Conversion technique. A special method category is
Multi-Valued Conversion. This category of converters also
provides conversions for multi-valued data types such as
arrays. The Typed Conversion and Multi-Valued Conversion
are conversion techniques mentioned in [4].

Table 6. Prolog Java Converter interface methods.

Modifier and Type Method and Description

PrologProvider

createProvider()
Create a Prolog provider instance.

T

fromTerm(PrologTerm term)
Create a native term representation from given Prolog term.

<K> K
fromTerm(PrologTerm term, Class<K> to)
Create a native rule representation term from given head and body and cast this native term to some specific given class.

T

fromTerm(PrologTerm head, PrologTerm[] body)
Create a native rule representation term from given head and body.

<K> K
fromTerm(PrologTerm head, PrologTerm[] body, Class<K> to)
Create a native rule representation term from given head and body and cast this native term to some specific given class.

T[]
fromTermArray(PrologTerm[] terms)
Create a native term array representation from given Prolog term array.

<K> K[]
fromTermArray(PrologTerm[] terms, Class<K[]> to)
Create a native term array representation from given Prolog term array and cast this native term array to some specific
given array class.

Class<T>
getGenericClass()
Get the generic class for the current Prolog converter at runtime.

<K extends PrologTerm>
K

toTerm(Object o, Class<K> from)
Create an equivalent Prolog term using the given native term representation and cast this Prolog term to some specific
given class.

PrologTerm

toTerm(T prologTerm)
Create an equivalent Prolog term using the given native term representation.

<K extends PrologTerm>
K[]

toTermArray(Object[] objects, Class<K[]> from)
Create an equivalent Prolog terms array using the given native terms array representation and cast this Prolog term array
to some specific array component class.

PrologTerm[]
toTermArray(T[] terms)
Create an equivalent Prolog terms array using the given native terms array representation.

Map<String,PrologTerm>
toTermMap(Map<String,T> map)
Create an equivalent Prolog terms map using the given native terms map representation.

<K extends PrologTerm,V>
Map<String,PrologTerm>

toTermMap(Map<String,V> map, Class<K> from)
Create an equivalent Prolog terms map using the given native terms map representation and cast every Prolog term to
some specific given class.

Map<String,PrologTerm>[]
toTermMapArray(Map<String,T>[] map)
Create an equivalent Prolog terms map array using the given native terms map array representation.

<K extends PrologTerm,V>
Map<String,PrologTerm>[]

toTermMapArray(Map<String,V>[] map, Class<K> from)
Create an equivalent Prolog terms map array using the given native terms map array representation and cast every Prolog
term to some specific given class.

<K extends PrologTerm>
K[][]

toTermMatrix(Object[][] objects, Class<K[][]> from)
Create an equivalent Prolog terms matrix using the given native terms matrix representation and cast every Prolog terms
matrix to some specific matrix component class.

PrologTerm[][]
toTermMatrix(T[][] terms)
Create an equivalent Prolog terms matrix using the given native terms matrix representation.

 Mathematics and Computer Science 2022; 7(5): 81-101 85

4.2. Prolog Java Converter

PrologJavaConverter is the converter for convert PrologTerm
to the equivalent Java object taking like reference the following
equivalence table. The classes that implement this interfaces are
responsible of the Primitive Conversions [4].

There are special cases of Java object that can be
converted to Prolog equivalent but the inverse case it's not
possible. They are Byte, Character, Short that can be
converted to PrologInteger using your numeric value. The
main problems are that after PrologInteger conversion this
value will be converted in Integer.

Table 7. Prolog Java Converter equivalence table.

Java Object Prolog Term

null PrologProvider.prologNil()

String PrologAtom

Boolean.FALSE PrologProvider.prologFalse()

Boolean.TRUE PrologProvider.prologTrue()

Integer PrologInteger

Float PrologFloat

Double PrologDouble

Long PrologLong

Object[] PrologList

Table 8. Prolog Java Converter interface methods.

Return Type Method and Description

boolean
containQuotes(String functor)
Check if the current functor have quotes at the start and end of the given functor.

String

removeQuotes(String functor)
Remove functor quotes if they are present.

Object

toObject(PrologTerm term)
Create a Java object from given Prolog term.

List<Object>
toObjectList(PrologTerm[] terms)
Create a Java objects list from given Prolog term array.

List<List<Object>>
toObjectLists(PrologTerm[][] terms)
Create an equivalent list of objects lists using the given Prolog terms matrix.

Map<String,Object>
toObjectMap(Map<String,PrologTerm> map)
Create an equivalent Java object map using the given Prolog terms map.

List<Map<String,Object>>
toObjectMaps(Map<String,PrologTerm>[] maps)
Create an equivalent Java object map list using the given Prolog terms map array.

Object[]
toObjectsArray(PrologTerm[] terms)
Create a Java objects array from given Prolog term array.

PrologTerm

toTerm(Object object)
Create an equivalent Prolog term using the given Java object.

PrologTerm[]
toTermsArray(Object[] objects)
Create an equivalent Prolog terms array using the given Java objects array.

4.3. Prolog Provider

Prolog Provider is the mechanism to interact with all
Prolog components. Provider classes implementations allow
create Prolog Terms, Prolog Engine, Java Prolog Converter,
Prolog Parsers and system logger. Using
org.prolobjectlink.prolog.Prolog bootstrap class the Prolog
Providers are created specifying the provider class in
getProvider(Class<?>) method. This is the workflow start for
JPI. When the Prolog Provider is created the next workflow
step is the Prolog Terms creation using Java primitive types
or using string with Prolog syntax. Provider allow

create/parsing all Prolog Terms (Atoms, Numbers, Variables
and Compounds). After term creation/parsing the next step is
create an engine instance with newEngine() method. Using
previous term creation and engine instance Prolog Queries
can be formulated. This is possible because the engine class
have multiples queries creation methods like a query factory.
After query creation the Query interface present many
methods to retrieve the query results. The result methods are
based on result quantities, result terms, result object types,
etc… This is the final step in the workflow. In the table 9 is
resumed all Prolog Provider interface methods.

Figure 1. Prolog workflow.

86 Jose Eduardo Zalacain Llanes: Application Provider Interface for Interaction Between Java and
Prolog Programming Languages

Table 9. Prolog Provider Interface Methods.

Return Type Method and Description

<K> K
fromTerm(PrologTerm term, Class<K> to)
Create a native rule representation term from given head and body and cast this native term to some specific
given class.

<K> K
fromTerm(PrologTerm head, PrologTerm[] body, Class<K> to)
Create a native rule representation term from given head and body and cast this native term to some specific
given class.

<K> K[]
fromTermArray(PrologTerm[] terms, Class<K[]> to)
Create a native term array representation from given Prolog term array and cast this native term array to some
specific given array class.

<K> PrologConverter<K>
getConverter()
Get a prolog converter instance to map the abstract prolog data types to under-laying prolog implementations
data types.

PrologJavaConverter

getJavaConverter()
Get a Java to Prolog converter instance to map the abstract prolog data types to Java types.

PrologLogger

getLogger()
Get the prolog system logger instance to report any errors or exceptions

String

getName()
Name of the wrapped engine.

PrologParser
getParser()
Get a prolog parser instance to parser the strings with prolog syntax.

String

getVersion()
Version of the wrapped engine.

boolean
isCompliant()
True if wrapped engine implement ISO Prolog and false in other case

PrologAtom

newAtom(String functor)
Create a prolog atom term setting like atom value the given string.

PrologDouble

newDouble()
Create a prolog double number instance with 0.0 value.

PrologDouble

newDouble(Number value)
Create a prolog double number instance with the given value.

PrologEngine

newEngine()
Create a new prolog engine instance ready to be operate.

PrologEngine

newEngine(String file)
Create a new prolog engine instance ready to be operate.

PrologFloat

newFloat()
Create a prolog float number instance with 0.0 value.

PrologFloat

newFloat(Number value)
Create a prolog float number with the given value.

PrologInteger

newInteger()
Create a prolog integer number instance with 0 value.

PrologInteger

newInteger(Number value)
Create a prolog integer number instance with the given value.

PrologList

newList()
Create an empty prolog list term.

PrologList

newList(Object head)
Create a prolog list with one object item.

PrologList

newList(Object[] arguments)
Create a prolog list from java objects arguments array and the tail item is an empty list.

PrologList

newList(Object[] arguments, Object tail)
Create a prolog list from java objects arguments array and the tail item is the given java object.

PrologList

newList(Object head, Object tail)
Create a prolog list with two java objects items [head | tail].

PrologList

newList(PrologTerm head)
Create a prolog list with one term item.

PrologList

newList(PrologTerm[] arguments)
Create a prolog list from prolog terms arguments array and the tail item is an empty list.

PrologList

newList(PrologTerm[] arguments, PrologTerm tail)
Create a prolog list from prolog terms arguments array and the tail item is the given prolog term.

PrologList

newList(PrologTerm head, PrologTerm tail)
Create a prolog list with two terms items [head | tail].

PrologLong

newLong()
Create a prolog long number instance with 0 value.

PrologLong

newLong(Number value)
Create a prolog long number instance with the given value.

PrologTerm

newReference(Object object)
Create a prolog object reference term that hold the given object.

 Mathematics and Computer Science 2022; 7(5): 81-101 87

Return Type Method and Description

PrologTerm

newStructure(Object left, String operator, Object right)
Create a prolog structure that represent an expression defined by your left and right operands separated by infix
operator.

PrologTerm

newStructure(PrologTerm left, String operator, PrologTerm right)
Create a prolog structure that represent an expression defined by your left and right operands separated by infix
operator.

PrologTerm

newStructure(String functor, Object... arguments)
Create a prolog structure with the functor (structure name) and java objects arguments array.

PrologStructure

newStructure(String functor, PrologTerm... arguments)
Create a prolog structure with the functor (structure name) and prolog terms arguments array.

PrologVariable

newVariable(int position)
Create an anonymous variable instance with associated index.

PrologVariable

newVariable(String name, int position)
Create an named variable instance with associated index.

PrologClause

parseClause(String clause)
Parse the string with Prolog syntax and create an equivalent Prolog clause instance.

PrologList

parseList(String stringList)
Parse the string with Prolog syntax and create an equivalent Prolog list term instance.

Set<PrologClause>
parseProgram(File in)
Parse the Prolog text contained at specific file and return a Prolog clause set found in the file.

Set<PrologClause>
parseProgram(String file)
Parse the Prolog text contained at specific file path and return a Prolog clause set found in the file.

PrologStructure

parseStructure(String stringStructure)
Parse the string with Prolog syntax and create an equivalent Prolog structure term instance.

PrologTerm

parseTerm(String term)
Parse the string with Prolog syntax and create an equivalent Prolog term instance.

PrologTerm[]
parseTerms(String stringTerms)
Parse the comma separate terms in the given string with prolog syntax and return an array of terms formed by
the comma separate terms.

PrologTerm

prologCut()
Get the prolog term that represent the prolog cut built-in.

PrologTerm

prologEmpty()
Get the prolog empty list term.

PrologTerm

prologFail()
Get the prolog fail term that represent fail built-in.

PrologTerm

prologFalse()
Get the prolog false term that represent false built-in.

PrologTerm

prologInclude(String file)
Get the prolog term representing the directive use by under-laying prolog implementation for file inclusion.

PrologTerm

prologNil()
Get the prolog nil term representing the null data type for prolog data type system.

PrologTerm

prologTrue()
Get the prolog true term that represent true built-in.

<K extends PrologTerm>
K

toTerm(Object o, Class<K> from)
Create an equivalent Prolog term using the given native term representation and cast this Prolog term to some
specific given class.

<K extends PrologTerm>
K[]

toTermArray(Object[] objects, Class<K[]> from)
Create an equivalent Prolog terms array using the given native terms array representation and cast this Prolog
term array to some specific array component class.

<K extends PrologTerm,V>
Map<String,PrologTerm>

toTermMap(Map<String,V> map, Class<K> from)
Create an equivalent Prolog terms map using the given native terms map representation and cast every Prolog
term to some specific given class.

<K extends PrologTerm,V>
Map<String,PrologTerm>[]

toTermMapArray(Map<String,V>[] map, Class<K> from)
Create an equivalent Prolog terms map array using the given native terms map array representation and cast
every Prolog term to some specific given class.

<K extends PrologTerm>
K[][]

toTermMatrix(Object[][] objects, Class<K[][]> from)
Create an equivalent Prolog terms matrix using the given native terms matrix representation and cast every
Prolog terms matrix to some specific matrix component class.

JPI reduce the code lines to interact with Prolog engines
and language. Is very simple and easy to use this is showed
in Hello World program.
public class Main {
 public static void main(String[] args) {
 PrologProvider provider =
Prolog.getProvider(SwiProlog.class);

 PrologEngine engine = provider.newEngine();
 engine.asserta("sample('hello wolrd')");
 PrologQuery query = engine.query("sample(X)");
 System.out.println(query.one());
 }
}

88 Jose Eduardo Zalacain Llanes: Application Provider Interface for Interaction Between Java and
Prolog Programming Languages

4.4. Prolog Terms

All Java Prolog connector libraries provide data type
abstraction. Prolog data type abstraction have like ancestor
the Term class. Prolog term is coding like abstract class and
other Prolog terms are derived classes. In PrologTerm is
defined the common term operation for all term hierarchy
(functor, arity, compare, unify, arguments). The derived
classes implement the correct behavior for each before
mentioned operations. All Prolog data types PrologAtom,
PrologNumber, PrologList, PrologStructure and
PrologVariable are derived from this class. All before
mentioned classes extends from this class the commons
responsibilities. PrologTerm extends from Comparable
interface to compare the current term with another term
based on Standard Order1. The data type hierarchy for JPI is
show in the table 10 and in the table 11 is resumed
PrologTerm taxonomy and interface methods.

PrologAtom represent the Prolog atom data type. Prolog
atoms are can be of two kinds simple or complex. Simple
atoms are defined like a single alpha numeric word that begin
like initial lower case character. The complex atom is
defining like any character sequence that begin and end with
simple quotes. The string passed to build a simple atom
should be match with [a-z] [A-Za-z0-9_] * regular
expression. If the string passed to build an atom don't match
with the before mentioned regular expression the atom
constructor can be capable of create a complex atom
automatically. For complex atom the string value can have
the quotes or just can be absent. The printed string
representation of the complex atom implementation set the
quotes if they are needed.

PrologTerm pam = provider.newAtom("pam");
PrologTerm bob = provider.newAtom("bob");
PrologDouble represent a double precision floating point

number. Extends from PrologNumber who contains an
immutable Double instance. The Prolog Provider is the
mechanism to create a new Prolog double invoking
PrologProvider.newDouble(Number). PrologFloat represent a
single precision floating point number. Extends from
PrologNumber who contains an immutable Float instance.
The Prolog Provider is the mechanism to create a new Prolog
float invoking PrologProvider.newFloat(Number).
PrologInteger represent an integer number. Extends from
PrologNumber who contains an immutable Integer instance.
The Prolog Provider is the mechanism to create a new Prolog
integer invoking PrologProvider.newInteger(Number).
Prolog term that represent a long integer number. Extends
from PrologNumber who contains an immutable Long
instance. The Prolog Provider is the mechanism to create a
new Prolog long integer invoking
PrologProvider.newLong(Number).
PrologTerm pi = provider.newDouble(Math.PI);
PrologTerm euler = provider.newFloat(Math.E);
PrologTerm i = provider.newInteger(10);

1 Variables < Atoms < Numbers < Compounds. The same type term is compared
by value or alphabetic order.

PrologTerm l = provider.newLong(10);
PrologVariable is created using
PrologProvider.newVariable(int) for anonymous variables
and PrologProvider.newVariable(String, int) for named
variables. The Prolog variables can be used and reused
because they remain in java heap. You can instantiate a
prolog variable and used it any times in the same clause
because refer to same variable every time. The integer
parameter represents the declaration variable order in the
Prolog clause starting with zero.
 PrologTerm x = provider.newVariable("X", 0);
 PrologTerm y = provider.newVariable("Y", 1);
 PrologTerm z = provider.newVariable("Z", 2);
 engine.assertz(

provider.newStructure(grandparent, x, z),
 provider.newStructure(parent, x, y),

 provider.newStructure(parent, y, z)
);

PrologReference term is inspired on JPL JRef. This term is
like a structure compound term that have like argument the
object identification atom. The functor is the @ character and
the arity is 1. An example of this prolog term is e.g.
@(J#00000000000000425). To access to the referenced
object, is necessary use PrologTerm.getObject().

PrologList are a special compound term that have like
functor a dot (.) and arity equals 2. Prolog list are recursively
defined. The first item in the list is referred like list head and
the second item list tail. The list tail can be another list that
contains head and tail. A special list case is the empty list
denoted by no items brackets ([]). The arity for this empty list
is zero. The Prolog Provider is the mechanism to create a
new PrologList is invoking PrologProvider.newList() for
empty list or PrologProvider.newList(PrologTerm) for one
item list or PrologProvider.newList(PrologTerm[]) for many
items.

PrologTerm empty = provider.newList();
 PrologTerm one = provider.newInteger(1);
 PrologTerm two = provider.newInteger(2);
 PrologTerm three = provider.newInteger(3);
 PrologTerm list = provider.newList(new PrologTerm[]

{ one, two, three});
 for (PrologTerm prologTerm: list) {
 System.out.println(prologTerm);
 }
PrologList implement Iterable interface to be used in for

each sentence iterating over every element present in the list.
 Iterator<PrologTerm> i = list.iterator();
 while (i.hasNext()) {
 PrologTerm prologTerm = i.next();
 System.out.println(prologTerm);
 }

 for (Iterator<PrologTerm> i = list.iterator(); i.hasNext();)

{
 PrologTerm prologTerm = i.next();
 System.out.println(prologTerm);
 }
Prolog structures consist in a relation the functor (structure

 Mathematics and Computer Science 2022; 7(5): 81-101 89

name) and arguments enclosed between parenthesis. The
Prolog Provider is the mechanism to create a new Prolog
structures invoking PrologProvider.newStructure(String,
PrologTerm...). Two structures are equals if and only if are
structure and have equals functor and arguments. Structures
terms unify only with same functor and arguments structures,
with free variable or with with structures where your
arguments unify if they have the same functor and arity.
Structures have a special property named arity that means the
number of arguments present in the structure. There are two

special structures term. They are expressions (Two arguments
structure term with operator functor) and atoms (functor with
zero arguments). For the first special case must be used
PrologProvider.newStructure(PrologTerm, String,
PrologTerm) specifying operands like arguments and
operator like functor.

PrologTerm pam = provider.newAtom("pam");
PrologTerm bob = provider.newAtom("bob");
PrologTerm parent = provider.newStructure("parent", pam,

bob);

Table 10. Prolog Terms Taxonomy.

Term Super-interfaces Ancestor Term Term Sub-interfaces Number Sub-interfaces

Comparable<PrologTerm>

 PrologTerm

 PrologAtom

 PrologVariable

 PrologReference

 PrologList

 PrologStructure

 PrologNumber

 PrologDouble

 PrologFloat

 PrologInteger

 PrologLong

Other connectors have different type organization. For
example, JPL and JPC have a remarkable difference in Lists
and Structures creation. Both terms belong to Compound

class and the creation of this terms specify the compound
term functor. JPI have one class for each term. Coding using
JPI is a strong typing way to interact with Prolog Terms.

Table 11. Prolog Term Interface Methods.

Return Type Method and Description

PrologTerm

getArgument(int index)
Term located at some given index position in the current term arguments if current term is a compound term.

PrologTerm[]
getArguments()
Term arguments if the current term is a compound term.

int
getArity()
Term arity.

String

getFunctor()
Term functor. The functor of a term is a name for compound terms.

String

getIndicator()
Gets the term indicator represented by one string with the format functor/arity.

Object

getObject()
For references terms return the referenced object.

PrologProvider

getProvider()
Prolog provider associated to the current term.

PrologTerm

getTerm()
Return current term instance if current term is not a variable or is a free variable term.

int
getType()
Get the term type.

boolean
hasIndicator(String functor, int arity)
True if term has an indicator with the format functor/arity that match with the given functor and arity.

boolean
isAtom()
True if this term is an atom

boolean
isAtomic()
True if this Term is an atomic term, false in other case

boolean
isCompound()
True if this Term is a compound term, false in other case

boolean
isDouble()
True if this Term is a double precision floating point number, false in other case

boolean
isEmptyList()
True if this Term is an empty list term ([]), false in other case

90 Jose Eduardo Zalacain Llanes: Application Provider Interface for Interaction Between Java and
Prolog Programming Languages

Return Type Method and Description

boolean
isEvaluable()
Check if the current term is a compound term and have like functor an operator.

boolean
isFalseType()
Check if the current term is a reference term and the referenced object is an instance of java false value.

boolean
isFloat()
True if this Term is a single precision floating point number, false in other case

boolean
isInteger()
True if this Term is an integer number, false in other case

boolean
isList()
True if this Term is a list, false in other case

boolean
isLong()
True if this Term is a large integer number, false in other case

boolean
isNil()
True if this Term is a nil term (null term for prolog), false in other case

boolean
isNullType()
Check if the current term is a reference term and the referenced object is a java null value.

boolean
isNumber()
True if this term is an number

boolean
isObjectType()
Check if the current term is a reference term for some java object instance.

boolean
isReference()
Check if the current term is a reference term for some java object instance or is a reference term and the
referenced object is a java null value.

boolean
isStructure()
True if this Term is a structured term, false in other case

boolean
isTrueType()
Check if the current term is a reference term and the referenced object is an instance of java true value.

boolean
isVariable()
True if this Term is a variable, false in other case

boolean
isVoidType()
Check if the current term is a reference term for java void type.

boolean
unify(PrologTerm term)
Check that the current term unify with the given term.

4.5. Prolog Operator

Prolog operators are composed by a string operator name, string operator specifier or type and an operator priority. Extends
from Comparable to compare with others operators instance over priority property.

Table 12. Prolog Operator Interface Methods.

Return Type Method and Description

String

getOperator()
String symbol that represent the Prolog operator.

int
getPriority()
Integer number between 0 and 1200 that represent the operator priority.

String

getSpecifier()
String symbol that specify the associativity and position of the Prolog operator.

4.6. Prolog Indicator

Indicator to denote the signature for Prolog Terms using a functor/arity format. More formally the indicator is formed by the
concatenation of the term functor and term arity separated by slash.

Table 13. Prolog Indicator Interface Methods.

Return Type Method and Description

int
getArity()
Indicator arity that is the argument number for compound terms.

String

getFunctor()
Indicator functor that is the name for compound terms.

String

getIndicator()
Gets the term indicator represented by one string with the format functor/arity.

 Mathematics and Computer Science 2022; 7(5): 81-101 91

4.7. Prolog Engine

Prolog Engine provide a general propose application interface
to interact with Prolog Programing Language. Is a convenient
abstraction for interacting with Prolog Virtual Machine from
Java [1, 2, 17]. In Java Prolog Engine connectors libraries, the
abstract engine is able to answer queries using the abstract term
representation before mentioned. There are several

implementation engines and in this project we try connect from
top level engine to more concrete or specific Prolog Engine.
Based on JPC we have a top level engine that communicate with
more concretes engines. Over this concretes engines we offer
several services to interact with the concrete engines with low
coupling and platform independency. The common methods
present in Prolog Engine are listed in the table 14.

Table 14. Prolog Engine Interface Methods.

Return Type Method and Description

void
abolish(String functor, int arity)
Remove all predicates that match with the predicate indicator (PI) formed by the concatenation of the given string
functor and integer arity separated by slash (functor/arity).

void
asserta(PrologTerm head, PrologTerm... body)
Add a rule specified by the rule head and rule body if the specified rule clause non exist.

void
asserta(String stringClause)
Parse the string creating internal prolog clause and add the clause in the main memory program if the clause non
exist.

void
assertz(PrologTerm head, PrologTerm... body)
Add a rule specified by the rule head and rule body if the specified rule clause non exist.

void
assertz(String stringClause)
Parse the string creating internal prolog clause and add the clause in the main memory program if the clause non exist.

boolean

clause(PrologTerm head, PrologTerm... body)
Find a rule specified by the rule head and rule body in main memory program that unify with the given clause
returning true in this case. If the clause not exist in main memory program or exist but not unify with the given clause
false value is returned.

boolean
clause(String stringClause)
Parse the string creating internal prolog clause and returning true if the clause in the main memory program unify
with the given clause.

void
consult(Reader reader)
Consult a prolog program from specified reader parsing the prolog program and put this program into prolog engine.

void
consult(String path)
Consult a file specified by the string path loading an parsing the prolog program.

boolean
contains(PrologTerm goal, PrologTerm... goals)
Check if the given goal array have solution using the resolution engine mechanism.

boolean
contains(String goal)
Parse the string creating internal prolog clause and returning true if the given goal have solution using the resolution
engine mechanism.

boolean
currentOperator(int priority, String specifier, String operator)
Check if in the wrapped prolog engine is defined some particular operator specified by your Priority, Specifier and
Operator.

Set<PrologOperator>
currentOperators()
Operator set defined in the wrapped prolog engine.

boolean
currentPredicate(String functor, int arity)
Check if in the wrapped prolog engine is defined some particular predicate specified by your predicate indicator (PI =
functor/arity).

Set<PrologIndicator>
currentPredicates()
Predicate set defined in the wrapped prolog engine.

void
dispose()
Clear program in main memory.

Set<PrologIndicator>
getBuiltIns()
Predicate set defined by the supported built-ins predicate in the wrapped prolog engine.

String

getLicense()
License of the wrapped engine.

PrologLogger

getLogger()
Get the prolog system logger instance to report any errors or exceptions

String

getName()
Name of the wrapped engine.

String

getOSArch()
Return the host operating system architecture.

String

getOSName()
Return the host operating system name.

Set<PrologIndicator>
getPredicates()
User defined predicate set defined in the wrapped prolog engine.

92 Jose Eduardo Zalacain Llanes: Application Provider Interface for Interaction Between Java and
Prolog Programming Languages

Return Type Method and Description

Set<PrologClause>
getProgramClauses()
Make and return a copy of the clause set present in the current engine.

Map<String,List<PrologClause>>
getProgramMap()
Make and return a copy of the clause map present in the current engine.

int
getProgramSize()
Number of clauses in the current engine.

PrologProvider

getProvider()
Get a Prolog provider instance hold in the current engine.

String

getVersion()
Version of the wrapped engine.

void
include(Reader reader)
Consult a prolog program from specified reader parsing the prolog program and include this program into current
prolog engine.

void
include(String path)
Consult a file specified by the string path loading an parsing the prolog program and include the loaded program into
current engine.

boolean
isProgramEmpty()
Check if the program in main memory is empty returning true if the clause number in the program is 0 and false in
otherwise.

PrologClauseBuilder

newClauseBuilder()
Create a new clause builder instance to build prolog clauses programmatically.

PrologQueryBuilder

newQueryBuilder()
Create a new query builder instance to build prolog goal programmatically.

void
operator(int priority, String specifier, String operator)
Define an operator in the wrapped prolog engine with priority between 0 and 1200 and associativity determined by
specifier according to the table below Specification table

void
persist(String path)
Save the prolog program present in the current engine to some specific file specified by string path.

void
persist(Writer writer)
Write the prolog clauses in program present in the current engine using the given writer.

PrologQuery

query(PrologTerm[] terms)
Create a new query being the goal the given prolog term array.

PrologQuery

query(PrologTerm term, PrologTerm... terms)
Create a new query with at least one prolog term goal.

PrologQuery

query(String query)
Create a new query being the goal the given string with prolog syntax.

List<Map<String,PrologTerm>>
queryAll(PrologTerm term, PrologTerm... terms)
Create a new prolog query and return the list of prolog terms that conform the solution set for the current query.

List<Map<String,PrologTerm>>
queryAll(String goal)
Create a new prolog query and return the list of prolog terms that conform the solution set for the current query.

List<Map<String,PrologTerm>>
queryN(int n, PrologTerm term, PrologTerm... terms)
Create a new prolog query and return the list of (N) prolog terms that conform the solution set for the current query.

List<Map<String,PrologTerm>>
queryN(int n, String goal)
Create a new prolog query and return the list of (N) prolog terms that conform the solution set for the current query.

Map<String,PrologTerm>
queryOne(PrologTerm term, PrologTerm... terms)
Create a new prolog query and return the prolog terms that conform the solution set for the current query.

Map<String,PrologTerm>
queryOne(String goal)
Create a new prolog query and return the prolog terms that conform the solution set for the current query.

void
retract(PrologTerm head, PrologTerm... body)
Remove a rule specified by the rule head and rule body if the specified rule clause exist.

void
retract(String stringClause)
Parse the string creating internal prolog clause and remove the clause in the main memory program if the clause exist.

boolean
runOnLinux()
Check if the host operating system name refer to Linux OS.

boolean
runOnOSX()
Check if the host operating system name refer to OsX.

boolean
runOnWindows()
Check if the host operating system name refer to Windows OS.

boolean
unify(PrologTerm t1, PrologTerm t2)
Check that two terms (t1 and t2) unify.

4.8. Prolog Query

Prolog query is the mechanism to query the prolog database
loaded in prolog engine. The way to create a new prolog query
is invoking query() method in the Prolog Engine. When this

method is called the prolog query is open an only dispose() in
PrologQuery object close the current query and release all
internal resources. Prolog query have several methods to
manipulate the result objects. The main difference is in return
types and result quantities. The result types enough depending

 Mathematics and Computer Science 2022; 7(5): 81-101 93

of desire data type. Maps of variables name key and Prolog
terms as value, Maps of variables name key and Java objects
as value, List of before mentioned maps, Prolog terms array,
Prolog terms matrix, list of Java Objects and list of list of Java
Objects. Respect to result quantities Prolog query offer one, n-
th or all possible solutions. This is an important feature

because the Prolog engine is forced to retrieve the necessary
solution quantities. Prolog query implement Iterable and
Iterator. This implementation helps to obtain successive
solutions present in the query. The common methods present in
Prolog Query interface are listed in the table 15.

Table 15. Prolog Query Interface Methods.

Return Type Method and Description

List<Map<String,PrologTerm>>
all()
Return a list of map of variables name key and Prolog terms as value that conform the solution set for the current
query.

List<List<Object>>
allResults()
Return a list of list of Java Objects that conform the solution set for the current query.

PrologTerm[][]
allSolutions()
Return a Prolog terms matrix that conform the solution set for the current query.

List<Map<String,Object>>
allVariablesResults()
Return a list of map of variables name key and Java objects as value that conform the solution set for the current query.

Map<String,PrologTerm>[]
allVariablesSolutions()
Return an array of map of variables name key and Prolog terms as value that conform the solution set for the current
query.

void
dispose()
Release all allocations for the query.

PrologEngine

getEngine()
Engine held by the current query.

PrologProvider

getProvider()
Provider instance

boolean
hasMoreSolutions()
Check if the current query has more solutions.

boolean
hasSolution()
Check that the current query has solution.

PrologTerm[]
nextSolution()
Return the next prolog terms solution array for the current query.

Map<String,PrologTerm>
nextVariablesSolution()
Return the next prolog terms that conform the solution set for the current query.

PrologTerm[][]
nSolutions(int n)
Return a Prolog terms matrix of n x m order that conform the solution set for the current query where n is the solution
number and m is a free variable number in the query.

Map<String,PrologTerm>[]
nVariablesSolutions(int n)
Return an array of n size with maps of variables name key and Prolog terms as value that conform the solution set for
the current query where n is the solution number.

Map<String,PrologTerm>
one()
Return a map of variables name key and Prolog terms as value that conform the solution set for the current query.

List<Object>
oneResult()
Return a list of Java objects that conform the solution set for the current query.

PrologTerm[]
oneSolution()
Return the prolog terms that conform the solution set for the current query.

Map<String,Object>
oneVariablesResult()
Return a map of variables name key and Java objects as value that conform the solution set for the current query.

Map<String,PrologTerm>
oneVariablesSolution()
Return the prolog terms that conform the solution set for the current query.

public class Main {
 public static void main(String[] args) {
 PrologProvider provider = Prolog.getProvider(SwiProlog.class);

PrologEngine engine = provider.newEngine("zoo.pl");
 PrologVariable x = provider.newVariable("X", 0);
 PrologQuery query = engine.query(provider.newStructure("dark", x));
 while (query.hasNext()) {
 PrologTerm value = query.nextVariablesSolution().get("X");
 System.out.println(value);
 }
 query.dispose();
 engine.dispose();

94 Jose Eduardo Zalacain Llanes: Application Provider Interface for Interaction Between Java and
Prolog Programming Languages

 }
}
public class Main {
 public static void main(String[] args) {
 PrologProvider provider = Prolog.getProvider(SwiProlog.class);

 PrologEngine engine = provider.newEngine("zoo.pl");
 PrologVariable x = provider.newVariable("X", 0);
 PrologQuery query = engine.query(provider.newStructure("dark", x));
 for (Collection<PrologTerm> col: query) {
 for (PrologTerm prologTerm: col) {
 System.out.println(prologTerm);
 }
 }
 query.dispose();
 engine.dispose();

 }
}
public class Main {
 public static void main(String[] args) {
 PrologProvider provider = Prolog.getProvider(SwiProlog.class);

 PrologEngine engine = provider.newEngine("zoo.pl");
 PrologVariable x = provider.newVariable("X", 0);
 PrologQuery query = engine.query(provider.newStructure("dark", x));
 List<Object> solution = query.oneResult();
 for (int i = 0; i < solution.size(); i++) {
 System.out.println(solution.get(i));
 }
 query.dispose();
 engine.dispose();

 }
}

4.9. Prolog Query Builder

Prolog query builder to create prolog queries. The
mechanism to create a new query builder is using
PrologEngine.newQueryBuilder(). The query builder
emulates the query creation process. After define all
participant terms with the begin(PrologTerm) method, is
necessary specify the first term in the query. If the query has

more terms, they are created using comma(PrologTerm) for
everyone. Clause builder have a getQueryString() for string
representation of the clause in progress. After clause
definition this builder have query() method that create the
final query instance ready to be used. The follow code show
how create a Prolog query ?- big(X), dark(X). using
PrologQueryBuilder interface. The table 16 show the prolog
query builder interface methods.

Table 16. Prolog Query Builder Interface Methods.

Return Type Method and Description

PrologQueryBuilder

begin(PrologTerm term)
Append to the query builder the first term to be query.

PrologQueryBuilder

begin(String functor, PrologTerm... arguments)
Append to the query builder the first term to be query.

PrologQueryBuilder

comma(PrologTerm term)
Append to the query builder other term to be query in conjunctive mode.

PrologQueryBuilder

comma(PrologTerm left, String operator, PrologTerm right)
Append to the query builder other term to be query in conjunctive mode.

PrologQueryBuilder

comma(String functor, PrologTerm... arguments)
Append to the query builder other term to be query in conjunctive mode.

PrologEngine

getEngine()
Engine hold by the current builder

String

getQueryString()
Get the query in string format.

PrologQuery

query()
Create and return the result query.

 Mathematics and Computer Science 2022; 7(5): 81-101 95

Return Type Method and Description

PrologQueryBuilder

semicolon(PrologTerm term)
Append to the query builder other term to be query in disjunctive mode.

PrologQueryBuilder

semicolon(PrologTerm left, String operator, PrologTerm right)
Append to the query builder other term to be query in disjunctive mode.

PrologQueryBuilder

semicolon(String functor, PrologTerm... arguments)
Append to the query builder other term to be query in disjunctive mode.

PrologVariable x = provider.newVariable("X", 0);
PrologStructure big = provider.newStructure("big", x);
PrologStructure dark = provider.newStructure("dark", x);
PrologQueryBuilder builder = engine.newQueryBuilder();
PrologQuery query =

builder.begin(dark).comma(big).query();

4.10. Prolog Clause

Prolog clause is composed by two prolog terms that define a
prolog clause, the head and the body. This representation
considers the prolog clause body like a single term. If the body
is a conjunctive set of terms, the body is a structure with

functor/arity (, /2) and the first argument is the first element in
the conjunction and the rest is a recursive functor/arity (, /2)
structure. The functor and arity for the clause is given from
head term functor and arity. This class define some properties
for commons prolog clause implementations. They are boolean
flags that indicate if the prolog clause is dynamic multi-file and
discontiguos. This class have several methods to access to the
clause components and retrieve some clause properties and
information about it. Additionally, this class contains a prolog
provider reference for build terms in some operations. The
table 17 show the methods present in Prolog Clause interface.

Table 17. Prolog Clause Interface Methods.

Return Type Method and Description

PrologTerm

getArgument(int index)
Term located at some given index position in the clause head arguments.

PrologTerm[]
getArguments()
Term arguments present in the clause head.

int
getArity()
Integer number that represent the arguments number in the clause head.

PrologTerm

getBody()
Prolog term that represent the clause body.

PrologTerm[]
getBodyArray()
Get the clause body as terms array.

Iterator<PrologTerm>
getBodyIterator()
Iterator to iterate over all body terms.

String

getFunctor()
String that represent the functor in the clause head.

PrologTerm

getHead()
Prolog term that represent the clause head.

String

getIndicator()
Clause family functor/arity based indicator.

PrologIndicator

getPrologIndicator()
Clause family PrologIndicator based indicator.

PrologTerm

getTerm()
Prolog term representation of the current clause.

boolean
hasIndicator(String functor, int arity)
Check if the current clause have functor/arity based indicator specified by arguments, false in otherwise.

boolean
isDirective()
True if this clause is a directive, false in other case.

boolean
isDiscontiguous()
Deprecated.

Natives engine don't offer information about that.

boolean
isDynamic()
Deprecated.

Natives engine don't offer information about that.

boolean
isFact()
True if this clause is a fact, false in other case.

boolean
isMultifile()
Deprecated.

Natives engine don't offer information about that.

boolean
isRule()
True if this clause is a rule, false in other case.

boolean
unify(PrologClause clause)
Check that two clauses unify.

96 Jose Eduardo Zalacain Llanes: Application Provider Interface for Interaction Between Java and
Prolog Programming Languages

4.11. Prolog Clause Builder

Prolog clause builder to create prolog clauses. The
mechanism to create a new clause builder is using
PrologEngine.newClauseBuilder(). The clause builder
emulates the clause creation process. After define all
participant terms with the begin(PrologTerm) method, is
necessary specify the head of the clause. If the clause is a
rule, after head definition, the clause body is created with
neck(PrologTerm) for the first term in the clause body. If the
clause body have more terms, they are created using
comma(PrologTerm) for everyone. Clause builder have a
getClauseString() for string representation of the clause in
progress. After clause definition this builder have asserta(),
assertz(),clause(),retract() that use the wrapped engine
invoking the correspondent methods for check, insert or

remove clause respectively.
PrologTerm z = provider.newVariable("Z", 0);
PrologTerm darkZ = provider.newStructure("dark", z);
PrologTerm blackZ = provider.newStructure("black", z);
PrologTerm brownZ = provider.newStructure("brown", z);
PrologClauseBuilder builder = engine.newClauseBuilder();
builder.begin(darkZ).neck(blackZ).assertz();
builder.begin(darkZ).neck(brownZ).assertz();
The Prolog result in database is showed in the follow code.
The table 18 show the Prolog clause builder interface
methods.
dark(Z): -
 black(Z).
 dark(Z): -
 brown(Z).

Table 18. Prolog Clause Builder Interface Methods.

Return Type Method and Description

void
asserta()
Add the current clause in the main memory program if the clause non exist.

void
assertz()
Add the clause in the main memory program if the clause non exist.

PrologClauseBuilder

begin(PrologTerm term)
Append to the clause builder the head term in the clause.

PrologClauseBuilder

begin(String functor, PrologTerm... arguments)
Append to the clause builder the head term in the clause.

boolean
clause()
Check if the clause in the main memory program unify with the current clause and return true.

PrologClauseBuilder

comma(PrologTerm term)
Append to the clause builder other term in the clause body in conjunctive mode.

PrologClauseBuilder

comma(PrologTerm left, String operator, PrologTerm right)
Append to the clause builder other term in the clause body in conjunctive mode.

PrologClauseBuilder

comma(String functor, PrologTerm... arguments)
Append to the clause builder other term in the clause body in conjunctive mode.

String

getClauseString()
Get the clause in string format.

PrologEngine

getEngine()
Engine hold by the current builder

PrologClauseBuilder

neck(PrologTerm term)
Append to the clause builder the first term in the clause body.

PrologClauseBuilder

neck(PrologTerm left, String operator, PrologTerm right)
Append to the clause builder the first term in the clause body.

PrologClauseBuilder

neck(String functor, PrologTerm... arguments)
Append to the clause builder the first term in the clause body.

void
retract()
Remove the clause in the main memory program if the clause exist.

4.12. Prolog Logger

Table 19. Prolog Logger methods and levels.

Method Level

trace(Object, Object, Throwable) Level.FINEST

debug(Object, Object, Throwable) Level.FINE

info(Object, Object, Throwable) Level.INFO

warn(Object, Object, Throwable) Level.WARNING

error(Object, Object, Throwable) Level.SEVERE

Prolog Logger is the logger platform interface to log
message at any level. Is an adapter for Logger adapting the
Java logger mechanism for use with the most popular logger

methods. This logger mechanism is accessible from
PrologProvider.getLogger() or PrologEngine.getLogger()
This logger interface have all traditional methods used to log
messages at different levels (trace, debug, info,warn,error).
The levels used for this logger interface are Level constants
present in the table.

By default, the platform implements a logger mechanism
for drop log messages in Operating System temporal
directory into files named prolobjectlink-YYYY.MM.DD. In
AbstractLogger class there are many implementations for this
interface. Every final implementation class can extend from
AbstractLogger.

 Mathematics and Computer Science 2022; 7(5): 81-101 97

5. Prolog Scripting in Java

Java 6 added scripting support to the Java platform that
lets a Java application execute scripts written in scripting
languages such as Rhino JavaScript, Groovy, Jython, JRuby,
Nashorn JavaScript, etc. All classes and interfaces in the Java
Scripting API are in the javax.script package. Using a
scripting language in a Java application provides several
advantages, dynamic type, simple way to write programs,
user customization, easy way to develop and provide

domain-specific features that are not available in Java. For
achieve this propose Java Scripting API introduce a scripting
engine component. A script engine is a software component
that executes programs written in a particular scripting
language. Typically, but not necessarily, a script engine is an
implementation of an interpreter for a scripting language. To
run a script in Java is necessary perform the following three
steps, create a script engine manager, get an instance of a
script engine from the script engine manager and call the
eval() method of the script engine to execute a script.

public class Main {
 public static void main(String[] args) {

ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine engine = manager.getEngineByName("prolog");

 Boolean result = engine.eval("?- X is 5+3.");
 Integer solution = engine.get("X");
 System.out.println(solution);
 }
}

Using script engine, it possible read Prolog source file. Read Prolog source file allow coding all prolog source in separate
mode respect to Java program.
public class Main {
 public static void main(String[] args) {

ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine engine = manager.getEngineByName("prolog");
Boolean read = engine.eval(new FileReader("family.pl"));
Boolean eval = engine.eval("?- parent(Parent, Child)");
Object parent = engine.get("Parent");
Object child = engine.get("Child");
System.out.println(parent);
System.out.println(child);

 }
}

6. Analysis and Result

JPC and JPI Prolog Engine share many services that are
common for all engines implementations. This services are
grouped by two categories, Consults methods and Modifiers

methods. Consult methods using the engine to query for
anything, a file, clauses, and compute solutions. Modifiers
methods using the engine for modify a file and clauses. The
table 20 show a comparison between JPC and JPI Prolog
Engine services.

Table 20. Comparison between JPC and JPI Prolog Abstract Engines.

Description JPC JPI

Clear program in main memory and release engine resources. close dispose
Check if the goal have solution using the resolution engine mechanism or execute a Prolog command. command contains
Create a new query with at least one prolog term goal. query query
Convert a Java Object to term toTerm toTerm
Convert a term to Java Object fromTerm fromTerm
Define a prolog flag setPrologFlag -
Check the prolog flag definition. currentPrologFlag -
Define a prolog operator currentOp operator
Add a clause in the prolog program at first in the clause family asserta asserta
Add a clause in the prolog program at final in the clause family assertz assertz
Remove a clause in the prolog program retract retract
Remove all clause retractAll -
Remove all clause that match with the predicate indicator (functor/arity). abolish abolish
Check the clause existence in prolog program. clause clause
Consult a file ensured_loaded consult
Finds each solution to some goal considering the free variables bagof -
Finds each solution to some goal findall queryAll

98 Jose Eduardo Zalacain Llanes: Application Provider Interface for Interaction Between Java and
Prolog Programming Languages

Description JPC JPI

Finds each solution to some goal and remove duplicate and sort the solution set setof -
 forall -
Check that two terms (x and y) unify. unify unify
Check the prolog operator definition. isOperator currentOperator
Save the prolog program present in the current engine to some specific file - persist

JPI project have implemented a benchmark to compare the
throughput of the different Prolog Engines using JPI
interface. This Prolog benchmark is based on CIAO Prolog

[18] distribution benchmark. Every benchmark program
evaluates a Prolog engine feature in time unit. The follow
table explain each Prolog benchmark program.

Table 21. Prolog Benchmark programs and description.

Benchmark Description

boresea Show the effect of procedure pure calls. Can be called the peak performance of the prolog system.

choice_point
Tests call invoking the creation of a choice point, i.e. a branch point where the execution will possibly come back to in
case of backtracking.

backtrack1 Exhibits a kind of backtracking called " deep"

backtrack2 Exhibits a kind of backtracking called " shallow"

cut_100_times Contains a lot of cut at execution time.

dereference Program to benchmark the dereferencing speed.

enviroment Attempts to evaluate the creation and deletion of environments.

index_clause Test for clause indexing that is the selection of a clause due to the type of an argument.

create_list

Programs to evaluate the unification process in the Prolog system.

create_struct

match_list

match_struct

unification

The Java Prolog Benchmark (JPB) is an implementation of
before mentioned benchmark over JPI. JPB use the JMH
library in version 1.19 over Eclipse OpenJ9 VM-1.8.0_192
on Windows 10 Home x64. JMH is a Java harness for
building, running, and analyzing Nano, Micro and Macro
benchmarks written in Java and other languages targeting the
JVM. JPB was executed on Lenovo Ideapad 110 laptop with

a AMD A6-7310 with AMD Radeon R4 Graphics processor
to 2.0 GHz, 4 GB of RAM memory and 120 GB SSD. The
table 22 show the different result for every Prolog Engine
and benchmark program separate by a dot. This table show
the minimum, average, maximum, error and standard
deviation. The unit for the result values are milliseconds by
operations (ms/op).

Table 22. Comparison between JPI Prolog Benchmarks.

Benchmark Min Ave Max Error Stdev

JTrolog.dereference 4.658 5.169 7.294 0.590 0.679
JLog.dereference 26.523 29.010 33.049 1.624 1.870
Swi7.dereference 82.208 118.523 270.427 44.372 51.098
Swi.dereference 119.436 124.691 134.840 3.426 3.945
TuProlog.dereference 129.510 160.637 187.452 15.469 17.814
JTrolog.createList 0.361 0.434 0.531 0.043 0.049
TuProlog.createList 0.892 2.057 4.527 1.074 1.237
JLog.createList 25.297 46.589 135.373 24.452 28.159
Swi7.createList 84.783 113.168 181.969 23.236 26.758
Swi.createList 121.373 6637.999 129588.099 25129.795 28939.509
JTrolog.choicePoint 0.232 0.318 0.533 0.059 0.068
TuProlog.choicePoint 0.856 1.625 5.038 0.785 0.904
JLog.choicePoint 27.529 43.303 168.283 26.484 30.499
Swi7.choicePoint 80.870 83.414 93.411 2.739 3.155
Swi.choicePoint 126.580 258.866 302.271 41.326 47.591
JTrolog.enviroment 0.275 0.318 0.404 0.031 0.036
TuProlog.enviroment 0.916 1.334 2.562 0.278 0.320
JLog.enviroment 25.786 42.578 149.087 24.232 27.905
Swi7.enviroment 84.218 103.194 132.318 14.495 16.693
Swi.enviroment 119.406 123.578 128.415 2.278 2.624
JTrolog.unification 0.301 0.400 1.015 0.148 0.171
TuProlog.unification 0.547 0.654 0.978 0.116 0.134
JLog.unification 27.203 40.454 93.933 16.783 19.327

 Mathematics and Computer Science 2022; 7(5): 81-101 99

Benchmark Min Ave Max Error Stdev

Swi7.unification 82.544 96.754 189.181 20.738 23.881
Swi.unification 124.718 402352.360 8041075.315 1561276.969 1797968.879
JTrolog.backtrack1 0.235 0.379 1.015 0.171 0.197
TuProlog.backtrack1 0.523 0.558 0.641 0.030 0.034
JLog.backtrack1 30.867 46.213 175.463 28.616 32.954
Swi7.backtrack1 80.646 86.140 114.160 6.675 7.687
Swi.backtrack1 122.080 129.405 146.025 4.273 4.921
JTrolog.boresea 0.388 0.413 0.475 0.020 0.023
TuProlog.boresea 0.730 1.103 1.820 0.367 0.423
JLog.boresea 25.014 41.428 105.256 14.895 17.153
Swi7.boresea 80.504 82.625 100.992 3.834 4.415
Swi.boresea 124.135 143.347 290.281 38.662 44.523
JTrolog.backtrack2 0.263 0.280 0.302 0.010 0.012
TuProlog.backtrack2 0.332 0.371 0.715 0.072 0.082
JLog.backtrack2 27.425 30.031 33.087 1.352 1.557
Swi7.backtrack2 80.711 82.688 99.415 3.515 4.048
Swi.backtrack2 123.665 145.707 272.748 37.636 43.341
JTrolog.benchQueryAll 0.499 0.601 0.730 0.056 0.065
TuProlog.benchQueryAll 2.608 3.030 4.597 0.500 0.575
JLog.benchQueryAll 28.311 36.254 44.927 4.840 5.574
Swi7.benchQueryAll 81.132 95.479 243.213 31.351 36.104
Swi.benchQueryAll 123.917 130.416 153.614 5.545 6.386
JTrolog.indexClause 0.248 0.293 0.684 0.081 0.093
TuProlog.indexClause 1.469 1.771 3.948 0.578 0.665
JLog.indexClause 29.863 41.806 97.886 12.937 14.899
Swi7.indexClause 85.409 118.210 359.058 55.061 63.408
Swi.indexClause 130.373 143.717 214.025 14.608 16.823
JTrolog.benchQuery 0.254 0.291 0.399 0.037 0.043
TuProlog.benchQuery 1.145 1.385 3.299 0.446 0.513
JLog.benchQuery 30.035 44.767 94.387 12.163 14.007
Swi7.benchQuery 81.336 83.789 96.867 3.140 3.616
Swi.benchQuery 128.774 150.243 276.261 41.693 48.014
JTrolog.cut100Times 0.161 0.276 1.176 0.187 0.216
TuProlog.cut100Times 0.558 0.630 0.907 0.077 0.089
JLog.cut100Times 27.196 32.433 58.083 7.054 8.124
Swi7.cut100Times 84.459 121.986 416.699 67.764 78.037
Swi.cut100Times 119.974 140.565 271.021 37.051 42.668
JTrolog.matchList 0.450 0.534 0.707 0.047 0.054
TuProlog.matchList 2.803 3.733 5.648 0.744 0.857
JLog.matchList 27.196 44.256 107.744 17.797 20.495
Swi7.matchList 82.490 108.594 220.089 26.056 30.006
Swi.matchList 241.915 262.250 282.613 9.630 11.090
JTrolog.matchStruct 0.509 0.552 0.661 0.034 0.040
TuProlog.matchStruct 2.777 3.626 5.030 0.697 0.803
JLog.matchStruct 26.844 43.180 89.131 14.318 16.488
Swi7.matchStruct 94.334 105.181 159.194 15.319 17.641
Swi.matchStruct 240.859 257.967 266.426 5.057 5.824
JTrolog.choicePoint0Arg 0.187 0.234 0.700 0.097 0.112
TuProlog.choicePoint0Arg 1.064 1.321 3.544 0.464 0.535
JLog.choicePoint0Arg 27.418 40.847 111.714 15.917 18.330
Swi7.choicePoint0Arg 81.250 101.547 207.563 28.537 32.863
Swi.choicePoint0Arg 126.067 353.090 1850.143 316.775 364.799
JTrolog.createStruct 0.337 0.388 0.441 0.026 0.030
TuProlog.createStruct 1.385 2.121 3.104 0.584 0.672
JLog.createStruct 26.389 40.845 71.522 10.631 12.242
Swi7.createStruct 83.764 90.187 105.465 6.170 7.105
Swi.createStruct 119.428 139.177 440.288 61.581 70.917
JTrolog.enviroment0Arg 0.255 0.337 0.715 0.100 0.115
TuProlog.enviroment0Arg 0.595 0.842 1.161 0.102 0.117
JLog.enviroment0Arg 29.061 39.678 82.503 10.595 12.201
Swi7.enviroment0Arg 81.122 106.385 164.710 19.022 21.906
Swi.enviroment0Arg 133.933 141.338 145.693 2.825 3.253

100 Jose Eduardo Zalacain Llanes: Application Provider Interface for Interaction Between Java and
Prolog Programming Languages

Java-based engine implementation has better throughput
because use a direct memory access. Natives implementation
like JPI-SWI and JPI-SWI7 use a cache file. The
performance is affected by the time to access to cache file.
The best Java-based engine implementation is JTrolog.
JTrolog has the best times over every Prolog benchmark
program. The second best time for every Prolog benchmark
program is TuProlog except in dereference Prolog benchmark
program. TuProlog have the worst time in dereferencing
speed. JLog is the middle engine by throughput. The most
remarkable feature is the dereferencing speed occupying the
second place in this feature. The last one by throughput is
SWI. SWI is the last in every Prolog benchmark program
except in dereference Prolog benchmark program. The
slowest Prolog benchmark program for SWI is unification.
This test is the main cause of the SWI slow performance.
SWI7 is a most efficient version of SWI-Prolog. Have a

better performance respect to your older version because
optimize the unification procedure. This optimization reduces
the time for unification when JPI is used. The table 23
summarize the average measure for every engine
implementation. By the total average the best Prolog engine
is JTrolog. After JTrolog the best Prolog engines
performance is for TuProlog, JLog, SWI7 and SWI by this
order.

Table 23. Total average of JPI Prolog Benchmarks.

JTrolog JLog Swi Swi7 TuProlog

11.21689 683.6709 411634.7 1697.866 186.7981

The figure 2 show the performance comparison chart - The
Y-Axis represents normalized score in logarithmic scale -
lower is better.

Figure 2. Average total of JPI Prolog Benchmarks in logarithmic scale.

7. Conclusions

In this paper we presented a simple Prolog interface
written in Java, which connect Java and Prolog programming
languages named Java Prolog Interface (JPI). JPI is an intent
to connect all prolog implementations, native engines like
SWI, YAP and XSB. and Java-Based engines like TuProlog,
JLog and JTrolog. JPI s influenced by Interprolog, PDT and
JPC. At the moment only SWI, TuProlog, JLog and JTrolog
are the well implemented for production. Projects like
JiProlog, YAP and XSB are in development mode. The
project planning in the future the develop of more Prolog
engine connectors like CIAO, ECLiPSe [19], Jekejeke [20]
and others. The main goal is cover all Prolog engines that
have a Java connector or is Java-based.

JPI provides clear and concise access to Prolog and
simplifies the integration of predicates in Prolog and provides
an automated object-to-term mapping mechanism. Allow

interact with concrete engines in transparent way and single
sourcing for every Prolog Provider. Allow the coupling and
decoupling different concrete Prolog engines
implementations and the application code will be the same.
Provide data type abstraction and Introduce Java Scripting
Engine implementation. Prolog and Java connectors need
more over Java Platform. Java Prolog Interface need be an
API specification like (javax.logic) for all logic and
functional language interaction. One specification like this
allow more direct implementations reducing the impedance
mismatch cost and self-platform distribution API.

References

[1] Calejo, M. (2004). InterProlog: Towards a Declarative
Embedding of Logic Programming in Java. Logics in
Artificial Intelligence, 9th European Conference, JELIA 2004
(pp. 714-717). Lisbon, Portugal: Springer.

 Mathematics and Computer Science 2022; 7(5): 81-101 101

[2] Cimadamore, M., & Viroli, M. (2007). A Prolog-oriented
etension of Java programming based on generics annotations.
Proceedings PPPJ, 197-202.

[3] Cimadamore, M., & Viroli, M. (2008). Integrating Java and
Prolog throug generic methods and type inference.
Proceedings SAC, 198-205.

[4] Denti, E. O. (2001). tuProlog: A light-weight Prolog for
Internet. Practical Aspects of Declarative Languages, 1990,
184-198.

[5] Grogan, M. (2006). JSR-223, Scripting for the Java Platform
Specification. Santa Clara, California: Sun Microsystems,
Inc.

[6] Hermenegildo, M. V., Bueno, F., Carro, M., Lopez-Garcia, P.,
Mera, E., Morales, J. F., & Puebla, G. (2012). An overview of
Ciao and its design philosophy. Theory and Practice of Logic
Programming, 12, 219-252.

[7] Kashan, K. (2014). Beginning Java 8 APIs, Extension and
Libraries. New York: Apress.

[8] L. Ostermayer, F. F. (2014). CAPJA - A Connector
Architecture for Prolog and Java. 10th Workshop on
Knowledge Engineering and Software Engineering (KESE).

[9] Oracle. (2017). Java Platform, Standard Edition Java Scripting
Programmer's Guide. Oracle.

[10] Rho, T. D. (2004). The Prolog Development Tool – A Prolog
IDE for Eclipse. Retrieved from http://sewiki.iai.uni-
bonn.de/research/pdt/

[11] Schimps, J., & Shen, K. (2012). ECLiPSe – From LP to CLP.
Theory and Practice of Logic Programming, 12, 127-156.

[12] Sergio Castro, K. M. (2013). JPC: A Library for Modularising
Inter-Language Conversion Concerns between Java and
Prolog. International Workshop on Advanced Software
Development Tools and Tecniques.

[13] Sergio Castro, K. M. (2014). JPC: A Library for Categorising
and Applying Inter-Language. International Workshop on
Advanced Software Development Tools and Tecniques.

[14] Tarau, P. (2004). Agent Oriented Logic Programming
Constructs in Jinni 2004. International Conference of Logic
Programming. 3132, pp. 477-478. Springer,.

[15] Victor Santos Costa, R. R. (2012). The YAP Prolog System.
Theory and Practice of Logic Programming, 12, 5-34.

[16] Warren, T. S. (2012). XSB: Extending Prolog with Tabled
Logic Programming. Theory and Practice of Logic
Programming (TPLP), 12, 157-187.

[17] Wielemaker, J., & Angelopoulos, N. (2012). Syntactic
integration of external languages in Prolog. 22nd Workshop
on Logic-based Programming Environments (WLPE 2012),
40-50.

[18] Wielemaker, J., Schrijvers, T., & Triska, M. &. (2012). SWI-
Prolog. Theory and Practice of Logic Programming, 12, 67-
96.

[19] XLOG, T. (2010). Language Reference. Jekejeke Prolog 0.8.1.

[20] Zalacain Llanes, J. E. (2017). Mapping Objects to Persistent
Predicates. arXiv:1705.00556v1.

