
 
Mathematics and Computer Science 
2023; 8(4): 94-103 
http://www.sciencepublishinggroup.com/j/mcs 
doi: 10.11648/j.mcs.20230804.12 
ISSN: 2575-6036 (Print); ISSN: 2575-6028 (Online)  

 

  
 

  

 

On Computing the Metric Dimension of the Families of 
Alternate Snake Graphs 

Basma Mohamed
1, *

, Mohamed Amin
2 

1Department of Computer Science, Faculty of Computers and Artificial Intelligence, AlRyada University for Science and Technology, Sadat 
City, Egypt 

2Mathematics and Computer Science Department, Faculty of Science, Menoufia University, Shebin Elkom, Egypt 

Email address: 

 
*Corresponding author 

To cite this article: 
Basma Mohamed, Mohamed Amin. On Computing the Metric Dimension of the Families of Alternate Snake Graphs. Mathematics and 

Computer Science. Vol. 8, No. 4, 2023, pp. 94-103. doi: 10.11648/j.mcs.20230804.12 

Received: September 13, 2023; Accepted: October 8, 2023; Published: October 30, 2023 

 

Abstract: Consider a robot that is trying to determine its current location while navigating a graph-based environment. To 
know how distant it is from each group of fixed landmarks, it can send a signal. We handle the problem of precisely 
identifying the minimum number of landmarks needed and their ideal placement to guarantee the robot can always discover 
itself. The number of landmarks in the graph is its metric dimension, and the collection of nodes on which they are distributed 
is its metric basis. The smallest group of nodes required to uniquely identify each other node in a graph using shortest path 
distances is known as the metric dimension of the graph. We consider the NP-hard problem of finding the metric dimension of 
graphs. A set of vertices B of a connected graph G resolves G if every vertex of G is uniquely identified by its vector of 
distances to the vertices in B. The minimum resolving set is called the metric basis and the cardinality of the basis is called the 
metric dimension of G. Metric dimension has applications in a wide range of areas such as robot navigation, 
telecommunications, combinatorial optimization, and pharmacocatual chemistry. In this paper, we determine the metric 
dimension of the family of alternate snake graphs including alternate snake, alternate k-polygonal snake, double alternate 
triangular snake and triple alternate triangular snake graph. 
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1. Introduction 

Let G=(V, E) be a connected graph and d(u,v) be the 
shortest path between two vertices u,v � V(G). An ordered 
vertex set B={x1,x2,...,xk}⊆ V(G) is a metric basis of G if the 
following two conditions are satisfied: 

i) � v � V(G), the representation r(v|B) = (d(v, x1), 
d(v,x2),....,d(v, xk)) is unique. 

ii) B with minimum cardinality. 
The cardinality number of B is the metric dimension of � 

and is denoted dim (G). 
Slater [1, 2] introduced the notion of a metric basis as a 

locating set of G and uses the cardinality of B as a locating 
number to uniquely identify the location of an intruder in a 
network. Harary and Melter [3] introduced independently the 
notion of metric basis as a resolving set of G and the cardinality 

of B as a metric dimension. In [4], Khuller et al. have shown that 
determining the metric dimension of a graph is an NP-complete 
problem. Many scholars have improved an upper bound for the 
metric dimension of several graphs or determined their exact 
values. In [9], Saputro et al. obtained a sharp bound for the 
metric dimension of the lexicographic product of a connected 
graph G and an arbitrary graph H. In [6], Chartrand et al. 
showed that the path graph Pn, n ≥ 2 has a constant metric 
dimension 1, cycle graph Cn, n ≥ 3 has metric dimension 2, 
complete graph Kn, n ≥ 2 has metric dimension n-1 and complete 
bipartite graph Ks,t, s,t ≥ n ≥ 4 has metric dimension n-2. T is a 
tree of metric dimension 1, if T is a path. 

In [10], Nawaz et al. proved that the total graph of path 
power three T( ��� ) and four T( ��	 ) has an unbounded 
metric dimension. In [11], Nazeer et al. found that the 
metric dimension of two-middle path graph Two−Mid(pq), 
q≥3 is 2, three-middle path graph Three−Mid(Pq), q ≥3 is 
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3, three-total Pq Three−T(Pq), q ≥ 3 is 3, reflection middle 
tower path graph RL(Towers), s ≥3 is 2, middle tower path 
graph Middle Towers, s=2 is 1, Middle Towers, s≥ 3 is 2, 
symmetrical planar pyramid graph SPPs is 2 and 
reflection symmetrical planar pyramid graph RL(SPPs) is 
2. In [12], Ahmad et al. determined the metric dimension 
of kayak paddle graph KP (ℓ, m, n) and cycles Cn with 
chord and proved that both families possess a metric 
dimension 2. In [13], Borchert et al. computed the metric 
dimension of the circulant graphs Cn (±1,±2) and have 
shown that if n ≡ 1 (mod 4), then dim(Cn (±1,±2)) = 4. In 
[14], Imran et al. investigated the metric dimension of 
barycentric subdivision of Möbius ladders, the generalized 
Petersen multigraphs P(2n, n) and proved that they also 
have metric dimension 3 when n is even and 4 when n is 
odd. In [15], Jäger et al. proved that the metric dimension 

for Zn × Zn × Zn, n ≥ 2 is 
��� �. In [16], Ahmad et al. proved 

that the metric dimension of P(n,2)ʘK1 graph is 3, where 
ʘ is corona product. The metric dimension of convex 
polytopes has been studied in [17-20]. In [21], Imran et al. 
proved that the metric dimension of the m-level gear graph 

J2n,m n ≥ 4, m ≥3 is 
��� � + (m −1) 
��� � and the metric 

dimension of the generalized gear graph J3n is 
���  for 

every n ≥ 6. In [22], Pan et al. showed that the metric 
dimension of the splitting graphs of path S (Pn) and cycle 

S (Cn), n > 8 are 
���. In [23], Siddiqui et al. computed the 

metric dimension of antiweb-gear graphs AWJ2n, n ≥ 15 is 
���� �, m-level wheel Wn,m, n ≥ 7, m ≥ 3 is 
����� �+�� �1� 
���	� �. The first attempt to heuristically compute the 

smallest connected dominant resolving set of graphs using 
a binary version of the equilibrium optimization algorithm 
was made by Mohamed et al. [24]. The first binary 
implementation of the Enhanced Harris Hawks 
Optimization was provided by Mohamed et al. [25] in an 

attempt to heuristically compute the minimal connected 
resolving set of graphs. Mohamed et al. [26] investigated 
the metric dimension of subdivisions of a number of 
graphs, including the Lilly graph, the Tadpole graph, and 
the special trees star tree, bistar tree, and coconut tree. 
Mohamed et al. [27] examined the specific value of the 
secure resolving set for a few networks, including the 
trapezoid network, Z-(Pn) network, open ladder network, 
tortoise network, and ��� � �� network. Additionally, they 
calculated the domination numbers for several networks, 
including the twig network, double fan network, bistar 
network and linear kc4 - snake network. Mohamed [28] 
focused on the contraction and bijection of the metric 
dimension when a robot is moving across a network that is 
modelled by the (2, 1) C4-snake graph, 2∆2-snake graph 
and 3C4-snake graph. 

Metric dimension has been used in several applications 
such as robot navigation in networks [4, 5, 29-31], 
application to pharmaceutical chemistry Chartrand et al. [[6]], 
application to pattern recognition Melter et al. [7], and 
application to wireless sensor network localization [8]. 

In this paper, the metric dimension of alternate snake 
graphs, double alternate triangular snake, and alternate triple 
triangular snake graph is investigated. 

2. The Metric Dimension for Alternate 

Snake Graphs 

Theorem 2.1 dim (G) =2 if G is 
i) the alternate triangular snake A(Tn), n > 3. 
ii) the alternate quadrilateral snake A(QSn), n ≥ 8. 
iii) the alternate pentagonal snake A(PSn), n ≥ 5. 
Proof. i) Consider the following cases of alternate 

triangular snake A(Tn). 

 

Figure 1. Alternate triangular snake A(Tn). 

Case1. n � 0(mod 3) 
Let n=3k, k � 1, � � ��. The resolving set in general form 

is B = {v1,v2k}⸦V(A(Tn)) as well as the representations of 
vertices vi �V(A(Tn)) in regard to B are 

��� |"� # $ �% � 1,2� � %�,       1 ' i ' 2�;
�2% � ) � 5,2) � 2% + 1�,     2k+1 ' i ' ).  

Since all vertices have unique representations, we obtain 

dim(A(Tn)) = 2. 
B is also minimal, since Q = {v1,v2 } ⊂ B and T={ v1,v3 }⊂ 

B are not resolving sets: 
Vertices vn-k and vn have equal distances to vertices of Q and 
T. 

Case 2. n � 1(mod 3) 
Let n=3k+1, k � 1, � � ��. The resolving set in general 

form is B = {v1,v2k}⸦V(A(Tn)) as well as the representations 
of vertices vi �V(A(Tn)) in regard to B are 
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��� |"� #
-./
.0 �% � 1,2� � %�,       1 ' i ' 2�;

  �% � 1,1�            % # 2� + 1 
�2% � ) � 5,2) � 2% + 1�,     2k+2 ' i ' ).

 

Since all vertices have unique representations, we obtain 
dim(A(Tn)) = 2. 

B is also minimal, since Q = {v1,v2 } ⊂ B and T={ v1,v3 }⊂ 
B are not resolving sets: vertices vn-k -1 and vn have equal 
distances to vertices of Q and T. 

Case 3. n � 2(mod 3) 
Let n=3k+2, k � 1, � � ��. The resolving set is B ={v1, 

v2k+1}⸦V(A(Tn)) as well as the representations of vertices vi � 
V(A(Tn)) with regard to B are 

��� |"� #
-.
/
.0 �% � 1,2� � % + 1�,       1 ' i ' 2� + 1;

(i-1,1),           i=2k+2;
�2% � ) � 5,2) � 2% + 1�,     2k+3 ' i ' ).

 

Since all vertices have unique representations, we obtain 
dim (A(Tn)) = 2. 

B is also minimal, since Q = {v1,v2 } ⊂ B is not resolving 
set: vertices v3 and vn-k+1 have equal distance to vertices of Q. 

ii) The alternate quadrilateral snake A(QSn) has the 
following cases: 

 
Figure 2. Alternate quadrilateral snake A(QSn). 

Case 1: n � 0(mod 4) 
Let n = 4k, k 1 2, � � ��.  The resolving set in general 

form is B={v2,vn-3} ⸦V(A(QSn)) as well as the representations 
of vertices vi �V(A(QSn)) in regard to B  are as follow: 

��� |"� #

-.
...
./
...
..
02 ��� , �3 ��� 4 ,    1 ' i ' n-5; for i=1,3,. . .

2 3�� , �3 � 4 ,    2 ' i ' n-4; for i=2,4,. .
2 ��� , 04 ,      i = n-3;

�2� � 2, 1�,      i = n-2;

2 ��� , 14 ,      i = n-1.

�2� � 1,2�,      i = n.

  

These representations are concluded to be distinct and dim 
(A(QSn)) = 2. 

B is also minimal, since Q = {v2,v3 } ⊂ B and T={ v2,v4 }⊂ 
B are not resolving sets: vertices v1 and v4 have equal 
distance to vertices of Q and vertices v1 and v3 of T. 

Case 2: n � 1(mod 4) 
Let n = 4k+1, k 1 2, � � ��. The resolving set in general 

form is B={v2,vn-4} ⸦ V(A(QSn)) as well as the 
representations of vertices vi �V(A(QSn)) in regard to B are as 
follow: 

��� |"� #

-.
..
..
./
..
..
..
0 2 ��� , �3 � 4 ,    1 ' i ' n-6; for i=1,3,. . .

2 3�� , �3 3�� 4 ,    2 ' i ' n-5; for i=2,4,. .
�2� � 1,0�,      i = n-4;

2 3�� , 14 ,       i = n-3;

�2�, 1�,       i = n-2;

2 3�� , 24 ,       i = n-1.

�2�, 3�,       i = n.

  

These representations are concluded to be distinct and dim 
(A(QSn)) = 2. 

B is also minimal, since Q = {v2,vn-5 } ⊂ B and  
T={ v2,vn-6 }⊂ B are not resolving sets: 

vertices vn-1and vn-4 have equal distance to vertices of Q 

and T. 
Case 3: n � 2(mod 4) 
Let n = 4k+2, k 1 2, � � ��. The resolving set in general 

form is B={v1,vn-4}⸦ V(A(QSn)) as well as the representations 
of vertices vi �V(A(QSn)) in regard to B are as follow: 
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��� |"� #

-.
..
/
...
02 3�� , �3 3�� 4 ,    1 ' i ' n-3; for i=1,3,. . .

2 ��� , �3 � 4 ,    2 ' i ' n-2; for i=2,4,. .
2 3�� , 24 ,      i = n-1.

� � , 3�,      i = n.

  

These representations are concluded to be distinct and dim 
(A(QSn)) = 2. 

B is also minimal, since Q = {v1,vn-5 }⊂B and T={ v1,vn-

7 }⊂ B are not resolving sets: vertices vn-1and vn-4 have equal 
distance to vertices of Q and T. 

iii) The alternate pentagonal snake A(PSn). 

 

Figure 3. Alternate pentagonal snake A(PSn). 

Case1. n � 0(mod 5) 
Let n = 5k, k 1 1, k � Z+

. A minimal resolving set of V(A(PSn)) is B= {v1,v2k} ⸦ V(A(PSn)). The following representations 
of vertices vi � V(A(PSn)) in regard to B are distinct. 

��� |"� #
-.
/
.0 �% � 1,2� � %�,         1 ' i ' 2�;

(% � 2�, ) � % � 2),        2k+1 ' i ' 4�;

�2% � 9� + 3,2) � 2% + 2�,     4k+1 ' i ' ). 

Thus, dim (A(PSn)) = 2. 
Case 2. n � 1(mod 5) 
Let n = 5k+1, k 1 1,  k � Z

+
. A minimal resolving set of V(A(PSn)) is B= {v1,v2k+1} ⸦ V(A(PSn)). The following 

representations of vertices vi � V(A(PSn)) in regard to B are distinct. 

��� |"� #
-.
/
.0 �% � 1,2� � % + 1�,       1 ' i ' 2� + 1;

(% � 2� � 1, ) � % � 1),      2k+2 ' i ' 4� + 1;

�2% � 9� + 1,2) � 2% + 3�,    4k+2 ' i ' ).  

Thus, dim (A(PSn)) = 2. 
Case 3. n � 2(mod 5) 
Let n = 5k+2, k 1 1, k � Z

+. The resolving set in general form is B= {v1, v2k+2} ⸦ V(A(PPSn)). The representations of 
vertices vi � V(A(PPSn)) with regard to B are  

��� |"� #
-.
/
.0 �% � 1,2� + 2 � %�,       1 ' i ' 2� + 2;

(% � 2� � 1, ) � %),       2k+3 ' i ' 4� + 2;

�2% � 9� � 1,2) � 2% + 3�,     4k+3 ' i ' ). 

Since all vertices have different representations, we obtain 
dim (A(PPSn)) = 2. 

From case (1), case (2) and case (3), We conclude that 
metric dimension of alternate snake is 2. 



98 Basma Mohamed and Mohamed Amin: On Computing the Metric Dimension of the Families of Alternate Snake Graphs  
 

Theorem 2.2. If ASn(Ck), n ≥ 3, k ≥ 1 is an alternate k- polygonal snake, then dim (ASn(Ck))=2. 

 

Figure 4. Alternate k-pentagonal snake ASn(Ck). 

Proof. Consider the following cases of alternate k-
pentagonal snake ASn(Ck). 

Case 1. n � 0(mod k) 
A minimal resolving set of V(ASn(Ck)) is B= {v1,v2k} ⸦ 

V(ASn(Ck)). The following representations of vertices vi � 
V(ASn(Ck)) in regard to B are distinct. 

��� |"� #
-..
/
..0

�% � 1,2� � %�,       1 ' i ' 2�;

(% � 2�, 4� � % + 1),      2k+1 ' i ' 4�;

�% � 4� + 1,6� � % + 2�,    4k+1 ' i ' 6�;

�2% � 12� + 1,2) � 2% + 3�,     6k+1 ' i ' ).   
 

Thus, dim (ASn(Ck)) = 2. 
Case 2. n � 1(mod k) 
A minimal resolving set of V(ASn(Ck)) is B= {v1,v2k+1} ⸦ 

V(ASn(Ck)). The following representations of vertices vi � 
V(ASn(Ck)) in regard to B are distinct. 

��� |"�

#
-..
/
..0

�% � 1,2� � % + 1�,       1 ' i ' 2� + 1;

(% � 2� � 1, 4� � % + 3),      2k+2 ' i ' 4� + 1;

�% � 4�, 6� � % + 4�,       4k+2 ' i ' 6� + 1;

�2% � 12� � 1,2) � 2% + 4�,     6k+2 ' i ' ).   
 

Thus, dim (ASn(Ck)) = 2. 
Case 3. n � 2(mod k) 
A minimal resolving set of V(ASn(Ck)) is B= {v1,v2k+2} ⸦ 

V(ASn(Ck)). The following representations of vertices vi � 
V(ASn(Ck)) in regard to B are distinct. 

��� |"�

#
-..
/
..0

�% � 1,2� � % + 2�,       1 ' i ' 2� + 4;

(% � 2� � 1, 4� � % + 4),      2k+5 ' i ' 4� + 2;

�% � 4� � 1,6� � % + 6�,       4k+3 ' i ' 6� + 2;

�2% � 12� + 5,2) � 2% + 3�,     6k+3 ' i ' ).   
 

Thus, dim (ASn(Ck)) = 2. 
Theorem 2.3. If DA(Tn), n ≥ 8 is a double alternate 

triangular snake, then 

dim (DA(Tn))=

-./
.0 �	      %: ) # 8,12, … … .�3�	      %: ) # 9,13, … … .�3�	     %: ) # 10,14, … … . 

 

Figure 5. Double alternate triangular snake DA(Tn). 

Proof. The double alternate triangular snake has two cases. 
Case 1. When k is even (k is the number of blocks) 
Subcase 1. n � 0(mod 4) 
We write n=4k, k 1 2, � � ��. The resolving set in general form is B = {v2k+1, v2k+2,..., v3k}⸦V(DA(Tn)) as well as the 

representations of vertices vi �V(DA(Tn)) in regard to B are 
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��� |"�     =  

-.
..
..
..
..
..
..
./
..
..
..
..
..
..
..
0 �1,3,5, … … … ,2� − 1�,       i = 1;

�1,2,4, … … … ,2� − 2�,       i = 2;

�2,1,3 … … ,2� − 3�,       i = 3;

�3,1,2, … … ,2� − 4�,       i = 4;

�% − 1, % − 3, … ,1,3,5, … … . ,2� − %�,   5 ≤ % ≤ 2k-1, where % is odd;

�% − 1, % − 3, … ,1,2,4, … … . ,2� − %�,   6 ≤ % ≤ 2k-2, where % is even;

�% − 1, % − 3, … … … … … … . . ,1�,     i=2k;

�0,3,5, … … … … … . . ,2� − 1�,     i=2k+1;

�3,0,3, … … … … … … . . ,2� − 3 �,     i=2k+2;

(2i-5k+5,2i-5k+3, … … … . .,0,3,5, … … ,7k-2i-1),  2k+3 ≤ % ≤ 3� − 1;
(2i-5k+5,2i-5k+3, … … … . .,0),     % = 3�;

�2,3,5, … … . ,2� − 1�,           i=3k+1;

(3,2,3 … … … … … … … ,2� − 3),     i=3k+2;

(2i-7k+5, 2i-7k+3, … … .,2,3,5, … … . .,9k-2i-5), 3k+3 ≤ i ≤ n-1;

(2k-1, 2k-3, … … … … … .3,2),      i=n. 

 

Assume that B = {v2k+1, v2k+2,..., v3k} is the basis for DA(Tn). 
Every element in V((DA(Tn)) has unique representation. So B is 
resolving set for DA(Tn). 

If we remove any vertex from B then it is not resolving set for 
DA(Tn). Let B’ = {v2k+1, v2k+2,..., v3k-1} be subset of V((DA(Tn)) 
then there is at least one pair of vertices which gives same 
representation. So B’ is not resolving set for DA(Tn). Hence 

dim(DA(Tn)) = 
�
	. 

Subcase 2. n ≡ 1(mod 4) 
Let n=4k+1, k ≥ 2, � ∈ ��. The resolving set in general form 

is B = {v2k+2, v2k+3,..., v3k+1}⸦V(DA(Tn)) as well as the 
representations of vertices vi ∈V(DA(Tn)) in regard to B are 

��� |"� =

-.
..
..
..
..
..
/
..
..
..
..
..
.0

�1,3,5, … … … ,2� − 1�,       i = 1;

�1,2,4, … … … ,2� − 2�,       i = 2;

�% − 1, % − 3, … ,1,3,5, … … . ,2� − %�,   3 ≤ % ≤ 2k-1, where % is odd;

�% − 1, % − 3, … ,1,2,4, … … . ,2� − %�,   4 ≤ % ≤ 2k-2, where % is even;

�% − 1, % − 3, … … … … … … . . ,1�,     i=2k;

�% − 1, % − 3, … … … … … … . . ,2�,     i=2k+1;

�0,3,5, … … … … … … . . ,2� − 1�,     i=2k+2;

(2i-5k+5,2i-5k+3, … … … . .,0,3,5, … … ,7k-2i-5),  2k+3 ≤ % ≤ 3�;
�% − � − 2, % − � − 4, … … … . ,0�,     i=3k+1;

(2,3,5, … … … … … … … … ,2k-1),     i=3k+2;

(2i-7k+5, 2i-7k+3, … … .,2,3,5, … … . .,9k-2i-5), 3k+3 ≤ i ≤ n-1;

(2i-7k+5, 2i-7k+3, … … … … … .,2),      i=n. 
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Since all vertices have different representations, we obtain dim (DA(Tn)) =
�3�

	 . 

Subcase 3. n ≡ 2(mod 4) 
Let n=4k+2, k  ≥ 2, � ∈ ��. The resolving set in general form is B = {v2k+3, v2k+4,...,v3k+2}⸦V(DA(Tn)) as well as the 

representations of vertices vi ∈V(DA(Tn)) in regard to B are 

��� |"� =

-.
..
..
..
..
..
/
..
..
..
..
..
.0

�2,4, 6, … … … ,2��,       i = 1;

�1,3,5, … … … ,2� − 1�,       i = 2;

�1,2,4, … … … ,2� − 2�,       i = 3;

�2,1,3, … … … ,2� − 3�,       i = 4;�% − 2, % − 4, … ,1,2, … … . ,2� − % + 1�,   5 ≤ % ≤ 2k-1, where % is odd;

�% − 2, % − 4, … ,2,1, … … . ,2� − % + 1�,   6 ≤ % ≤ 2k, where % is even;

�% − 2, % − 4, … … , … … … . ,3,1�,     i=2k+1;

�% − 2, % − 4, … … … … … … . . ,4,2�,     i=2k+2;

�0,3,5, … … … … … … . . ,2� − 1�,     i=2k+3;

(2i-5k+1,2i-5k-1, … … … . .,0,3,5, … … ,7k-2i-1),  2k+4 ≤ % ≤ 3� + 1;
�% − � − 3, % − � − 5, … … … . ,0�,     i=3k+2;

(2i-7k+1, 2i-7k-1, … … .,2,3,5, … … . .,9k-2i-1), 3k+3 ≤ i ≤ n-1;

(2k-1, 2k-3, … … … … … . ,3,2),      i=n. 

 

Since all vertices have different representations, we obtain dim (DA(Tn)) =
�3�

	 . 

Case 2. When k is odd 

Subcase 1. n ≡ 0(mod 4) 
Let n=4k, k  ≥ 3, � ∈ ��. The resolving set in general form is B = {v2k+1, v2k+2,..., v3k}⸦V(DA(Tn))  

 as well as the representations of vertices vi ∈V(DA(Tn)) in regard to B are 

��� |"� =

-.
..
..
..
..
./
..
..
..
..
..
0 �1,3,5, . . . . . . . . . ,2� − 1�,       i = 1;

�1,2,4, . . . . . . . . . ,2� − 2�,       i = 2;

�% − 1, % − 3, . . . ,1,3,5, . . . . . . . ,2� − %�,   3 ≤ % ≤ 2k-1, where % is odd;

�% − 1, % − 3, . . . ,1,2,4, . . . . . . . ,2� − %�,   4 ≤ % ≤ 2k-2, where % is even;

�% − 1, % − 3, . . . . . . . . . . . . . . . . . . . . ,1�,     i=2k;

�0,3,5, . . . . . . . . . . . . . . . . . . . . ,2� − 1�,     i=2k+1;

(2i-5k+4, 2i-5k+2, … … … . .,0,3,5, … . . .,7k-2i-4),  2k+2 ≤ % ≤ 3� − 1;
�% − � − 1, % − � − 3, . . . . . . . . . . ,0�,     i=3k;

(2,3,5,. . . . . . . . . . . . . . . . . . . . . . . .,2k-1),     i=3k+1;

(2i-6k-1, 2i-6k-3,. . . . . . .,2,3,5,. . . . . . . .,8k-2i+1),   3k+2 ≤ i ≤ n-1;

(2k-1, 2k-3,. . . . . . . . . . . . . . . . ,3,2),      i=n. 
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We assume that B = {v2k+1, v2k+2,..., v3k} is the basis for DA(Tn). Every element in V((DA(Tn)) has unique representation. So B 
is resolving set for DA(Tn). 

If we remove any vertex from B then it is not resolving set for DA(Tn). Let B’ = {v2k+1, v2k+2,..., v3k-1} be subset of V((DA(Tn)) 
then there is at least one pair of vertices which gives same representation. So B’ is not resolving set for DA(Tn). Hence 

dim(DA(Tn)) = 
�3�

	 . 

Subcase 2. n ≡ 1(mod 4) 
Let n=4k+1, k  ≥ 3, � ∈ ��. The resolving set in general form is B = {v2k+3, v2k+4,..., v3k+2}⸦V(DA(Tn)) as well as the 

representations of vertices vi ∈V(DA(Tn)) in regard to B are 

��� |") =

-.
..
..
..
..
..
/
..
..
..
..
..
.0

(1,3,5, . . . . . . . . . ,2� − 1),       i = 1;

(1,2,4, . . . . . . . . . ,2� − 2),       i = 2;

(% − 1, % − 3, . . . ,1,3,5, . . . . . . . ,2� − %),   3 ≤ % ≤ 2k-1, where % is odd;

(% − 1, % − 3, . . . ,1,2,4, . . . . . . . ,2� − %),   4 ≤ % ≤ 2k-2, where % is even;

(% − 1, % − 3, . . . . . . . . . . . . . . . . . . . . ,1),     i=2k;

(% − 1, % − 3, . . . . . . . . . . . . . . . . . . . . ,2),     i=2k+1;

(0,3,5, . . . . . . . . . . . . . . . . . . . . ,2� − 1),     i=2k+2;

(2i-5k+2, 2i-5k,. . . . . . . . . . .,0,3,5,. . . . . .,7k-2i-2),  2k+3 ≤ % ≤ 3�;
(% − � − 2, % − � − 4, . . . . . . . . . . ,0),     i=3k+1;

(2,3,5,. . . . . . . . . . . . . . . . . . . . . . . .,2k-1),     i=3k+2;

(2i-7k+2, 2i-7k,. . . . . . .,2,3,5,. . . . . . . .,9k-2i-2),   3k+3 ≤ i ≤ n-1;

(2i-7k+2, 2i-7k,. . . . . . . . . . . . . . . .,2),      i=n. 

 

As all representations are distinct, we conclude that dim (DA(Tn)) = �3�
	 . 

Subcase 3. n ≡ 2(mod 4) 
Let n=4k+2, k  ≥ 3, � ∈ ��. The resolving set in general form is B = {v2k+3, v2k+4,...,v3k+2}⸦V(DA(Tn)) as well as the 

representations of vertices vi ∈V(DA(Tn)) in regard to B are 

�(� |") =

-.
..
..
..
..
/
..
..
..
..
.0

(2,4, . . . . . . . . . ,2�),       i = 1;

(1,3, . . . . . . . . . ,2� − 1),       i = 2;

(% − 2, % − 4, . . . ,1,2,4, . . . . . . . ,2� − % + 1),   3 ≤ % ≤ 2k-1, where % is odd;

(% − 2, % − 4, . . . ,2,1,3, . . . . . . . ,2� − % + 1),   4 ≤ % ≤ 2k-2, where % is even;

(% − 2, % − 4, … … … … … … . . ,1),     i=2k, 2k+1;

(% − 2, % − 4, … … … … … … . . ,2),     i=2k+2;

(0,3,5, . . . . . . . . . . . . . . . . . . . . ,2� − 1),     i=2k+3;

(2i-5k+2, 2i-5k, … … … . .,0,3,5, … … ,7k-2i),  2k+4 ≤ % ≤ 3� + 2;
(2,3,5,. . . . . . . . . . . . . . . . . . . . . . . .,2k-1),     i=3k+3;

(2i-7k, 2i-7k-2,. . . . . . .,2,3,5,. . . . . . . .,9k-2i),   3k+4 ≤ i ≤ n-1;

(2k-1, 2k-3,. . . . . . . . . . . . . . . . ,3,2),      i=n. 
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As all representations are distinct, we conclude that dim (DA(Tn)) = �3�	 . 

Theorem 2.4. If AT(Tn), n ≥ 10 is alternate triple triangular snake graph, then dim (AT(Tn)) = �3=� . 

 

Figure 6. Alternate triple triangular Snake graph AT(Tn). 

Proof. Let n=5k, k  1 2, � � ��. The resolving set in general form is B = {v1, v2,..., v2k}⸦V(AT(Tn)) as well as the 
representations of vertices vi �V(AT(Tn)) in regard to B are 

��� |"�  #

-.
..
..
..
..
./
..
..
..
..
..
0 �0,2,3,3,5,5, … … … ,2� � 1,2� � 1�,      i # 1;

�2,0,3,3,5,5, … … … ,2� � 1,2� � 1�,       i = 2;

�%, %, % � 2, % � 2, … ,3,3,0,2, … … . ,2� � %, 2� � %�,   3 ' % ' 2k, where % is odd;

�% � 1, % � 1, % � 3, % � 3, … ,2,0,3,3 … ,2� + 1 � %, 2� + 1 � %�,  4 ' % ' 2k, where % is even;

�% � 1, % � 1, % � 3, % � 3, … … … … … … . .2,0�,     i=2k;

�1,1,3,3, … … … … … . . ,2� � 1, 2� � 1�,     i=2k+1;

(i-2k-1,i-2k-1,i-2k-3,i-2k-3, … . .1,1,2,2, … … ,4k-i,4k-i),  2k+2 ' % ' 4� � 1; 
    (i-2k-1,i-2k-1,i-2k-3,i-2k-3, … . .1,1),          i=4k;       
(2, 2, 3, 3, 5, 5, … … … . ., 2k-1, 2k-1),       % # 4� + 1;

�3,3,2,2,3,3, … … . ,2� � 3,2� � 3�,           i=4k+2;

(2i-8k-1, 2i-8k-1, 2i-8k-3, 2i-8k-3,…,3,3,2,2, … ,10� � 2% + 1,10� � 2% + 1), i=4k+3 ' % ' ) � 1;

(2k-1, 2k-1, 2k-3,2k-3,… … … … … … . ,2,2),      i=n. 

 

We conclude that these representations are distinct and dim (AT(Tn)) = 
�3=� . 

3. Conclusion 

The metric dimension of alternate snake graphs have a 
constant metric dimension 2. The double alternate triangular 
snake and alternate triple triangular snake graph have an 
unbounded metric dimension as n> ∞. 

Open problem: Compute metric dimension of subdivision 
of alternate k-polygonal snake. 
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